Skip to main content
Log in

Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase

  • Published:
Lipids

Abstract

The oil-producing fungus Mortierella alpina 1S-4 is an industrial strain for arachidonic acid (AA) production. To determine its physiological properties and to clarify the biosynthetic pathways for PUFA, heterologous and homologous gene expression systems were established in this fungus. The first trial was performed with an enhanced green fluorescent protein gene to assess the transformation efficiency for heterologous gene expression. As a result, strong fluorescence was observed in the spores of the obtained transformant, suggesting that the foreign gene was inherited by the spores. The next trial was performed with a homologous PUFA elongase (GLELOp) gene, this enzyme having been reported to catalyze the elongation of GLA (18∶3n−6) to dihomo-γ-linolenic acid (20∶−6), and to be the rate-limiting step of AA production. The FA composition of the transformant was different from that of the host strain: The GLA content was decreased whereas that of AA was increased. These data support the hypothesis that the GLELOp enzyme plays an important role in PUFA synthesis, and may indicate how to control PUFA biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

DGLA:

dihomo-γ-linolenic acid

EGFP:

enhanced green fluorescent protein

GLELO:

elongase responsible for conversion of GLA to DGLA

References

  1. Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R., and Lefkowith, J.B. (1986) Arachidonic Acid Metabolism, Annu. Rev. Biochem. 55, 69–102.

    Article  PubMed  CAS  Google Scholar 

  2. Smith, W.L., and Borgeat, P. (1985) The Eicosanoids: Prostaglandins, Thromboxanes, Leukotrienes, and Hydroxy-eicosaenoic Acids, in Biochemistry of Lipids and Membranes (Vance, D.E., and Vance, J.E., eds.), pp. 325–360, Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  3. Horrobin, D.F. (1992) Nutritional and Medical Importance of γ-Linolenic Acid, Prog. Lipid Res. 31, 63–194.

    Article  Google Scholar 

  4. Yamada, H., Shimizu, S., and Shinmen, Y. (1987) Production of Arachidonic Acid by Mortierella elongata 1S-5, Agric. Biol. Chem. 51, 785–790.

    CAS  Google Scholar 

  5. Shimizu, S., Ogawa, J., Kataoka, M., and Kobayashi, M. (1997) Screening of Novel Microbial Enzymes for the Production of Biologically and Chemically Useful Compounds, in Advances in Biochemical Engineering/Biotechnology (Schepter, T., ed.), Vol. 58 pp. 45–87, Springer-Verlag, Berlin.

    Google Scholar 

  6. Wynn, J.P., and Ratledge, C. (2000) Evidence That the Rate-Limiting Step for the Biosynthesis of Arachidonic Acid in Mortierella alpina Is at the Level of the 18∶3 to 20∶3 Elongase, Microbiology 146, 2325–2331.

    PubMed  CAS  Google Scholar 

  7. Cinti, D.L., Cook, L., Nagi, N.N., and Suneja, S.K. (1992) The Fatty Acid Chain Elongation System of Mammalian Endoplasmic Reticulum, Prog. Lipid Res. 31, 1–51.

    Article  PubMed  CAS  Google Scholar 

  8. Bernert, J.T., Jr., and Sprecher, H. (1977) An Analysis of Partial Reactions in the Overall Chain Elongation of Saturated and Unsaturated Fatty Acids by Rat Liver Microsomes, J. Biol. Chem. 252, 6736–6744.

    PubMed  CAS  Google Scholar 

  9. Nugteren, D.H. (1965) The Enzymic Chain Elongation of Fatty Acids by Rat-Liver Microsomes, Biochim. Biophys. Acta 106, 280–290.

    PubMed  CAS  Google Scholar 

  10. Parker-Barnes, J.M., Das, T., Bobik, E., Leonard, A.E., Thurmond, J.M., Chaung, L.T., Huang, Y.S., and Mukerji, P. (2000) Identification and Characterization of an Enzyme Involved in the Elongation of n−6 and n−3 Polyunsaturated Fatty Acids, Proc. Natl. Acad. Sci. USA 97, 8284–8289.

    Article  PubMed  CAS  Google Scholar 

  11. Das, T., Thurmond, J.M., Bobik, E., Leonard, A.E., Parker-Barnes, J.M., Huang, Y.S., and Mukerji, P. (2000) Polyunsaturated Fatty Acid-Specific Elongation Enzymes, Biochem. Soc. Trans. 28, 658–660.

    Article  PubMed  CAS  Google Scholar 

  12. Takeno, S., Sakuradani, E., Murata, S., Inohara-Ochiai, M., Kawashima, H., Ashikari, T., and Shimizu, S. (2004) Establishment of an Overall Transformation System for an Oil-Producing Filamentous Fungus, Mortierella alpina 1S−4, Appl. Microbiol. Biotechnol. 65, 419–425.

    Article  PubMed  CAS  Google Scholar 

  13. Takeno, S., Sakuradani, E., Murata, S., Inohara-Ochiai, M., Kawashima, H., Ashikari, T., and Shimizu, S. (2004) Cloning and Sequencing of the ura3 and ura5 Genes, and Isolation and Characterization of Uracil Auxotrophs of the Fungus Mortierella alpina 1S−4, Biosci. Biotechnol. Biochem. 68, 277–285.

    Article  PubMed  CAS  Google Scholar 

  14. Malardier, L., Daboussi, M.J., Julien, J., Roussel, F., Scazzocchio, C., and Brygoo, Y. (1989) Cloning of the Nitrate Reductase Gene (niaD) of Aspergillus nidulans and Its Use for Transformation of Fusarium oxysporum, Gene 78, 147–156.

    Article  PubMed  CAS  Google Scholar 

  15. Chomczynski, P., and Sacchi, N. (1987) Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  16. Sakuradani, E., Kobayashi, M., and Shimizu, S. (1999) Δ9-Fatty Acid Desaturase from Arachidonic Acid-Producing Fungus. Unique Gene Sequence and Its Heterologous Expression in a Fungus, Aspergillus, Eur. J. Biochem. 260, 208–216.

    Article  PubMed  CAS  Google Scholar 

  17. Gomi, K., Iimura, Y., and Hara, S. (1987) Integrative Transformation of Aspergillus oryzae with a Plasmid Containing the Aspergillus nidulans argB Gene, Agric. Biol. Chem. 51, 2549–2555.

    CAS  Google Scholar 

  18. Iimura, Y., Gomi, K., Uzu, H., and Hara, S. (1987) Transformation of Aspergillus oryzae Through Plasmid-Mediated Complementation of the Methionine-Auxotrophic Mutation, Agric. Biol. Chem. 51, 323–328.

    CAS  Google Scholar 

  19. Sakuradani, E., Kobayashi, M., and Shimizu, S. (1999) Identification of an NADH-Cytochrome b5 Reductase Gene from an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S−4, by Sequencing of the Encoding cDNA and Heterologous Expression in a Fungus, Aspergillus oryzae, Appl. Environ. Microbiol. 65, 3873–3879.

    CAS  Google Scholar 

  20. Mackenzie, D.A., Wongwathanarat, P., Carter, A.T., and Archer, D.B. (2000) Isolation and Use of a Homologous Histone H4 Promoter and a Ribosomal DNA Region in a Transformation Vector for the Oil-Producing Fungus Mortierella alpina, Appl. Environ. Microbiol. 66, 4655–4661.

    Article  PubMed  CAS  Google Scholar 

  21. Sakuradani, E., Kobayashi, M., Ashikari, T., and Shimizu, S. (1999) Identification of Δ12-Fatty Acid Desaturase from Arachidonic Acid-Producing Mortierella Fungus by Heterologous Expression in the Yeast Saccharomyces cerevisiae and the Fungus Aspergillus oryzae, Eur. J. Biochem. 261, 812–820.

    Article  PubMed  CAS  Google Scholar 

  22. Tvrdik, P., Westerberg, R., Silve, S., Asadi, A., Jakobsson, A., Cannon, B., Loison, G., and Jacobsson, A. (2000) Role of a New Mammalian Gene Family in the Biosynthesis of Very Long Chain Fatty Acids and Sphingolipids, J. Cell Biol. 149, 707–717.

    Article  PubMed  CAS  Google Scholar 

  23. Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K., et al. (2004) Complete Sequencing and Characterization of 21,243 Full-Length Human cDNAs, Nat. Genet. 36, 40–45.

    Article  PubMed  Google Scholar 

  24. Shimizu, S., Kawashima, H., Akimoto, K., Shinmen, Y., and Yamada, H. (1989) Microbial Conversion of an Oil Containing α-Linolenic Acid to an Oil Containing Eicosapentaenoic Acid, J. Am. Oil Chem. Soc. 66, 342–347.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakayu Shimizu.

About this article

Cite this article

Takeno, S., Sakuradani, E., Murata, S. et al. Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids 40, 25–30 (2005). https://doi.org/10.1007/s11745-005-1356-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1356-6

Keywords

Navigation