Skip to main content

Advertisement

Log in

Lipid droplet dynamics in budding yeast

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Eukaryotic cells store excess fatty acids as neutral lipids, predominantly triacylglycerols and sterol esters, in organelles termed lipid droplets (LDs) that bulge out from the endoplasmic reticulum. LDs are highly dynamic and contribute to diverse cellular functions. The catabolism of the storage lipids within LDs is channeled to multiple metabolic pathways, providing molecules for energy production, membrane building blocks, and lipid signaling. LDs have been implicated in a number of protein degradation and pathogen infection processes. LDs may be linked to prevalent human metabolic diseases and have marked potential for biofuel production. The knowledge accumulated on LDs in recent years provides a foundation for diverse, and even unexpected, future research. This review focuses on recent advances in LD research, emphasizing the diverse physiological roles of LDs in the model system of budding yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACAT:

Acyl-CoA:cholesterol acyltransferase

ATGL:

Adipose triacylglyceride lipase

CCT:

CTP:phosphocholine cytidylyltransferase

CoA:

Coenzyme A

CDP-DAG:

Cytidine diphosphate-diacylglycerol

CTP:

Cytidine triphosphate

DAG:

Diacylglycerol

DGAT:

Acyl-CoA:diacylglycerol acyltransferase

ER:

Endoplasmic reticulum

ERAD:

ER-associated protein degradation

FA:

Fatty acid

FIT:

Fat-inducing transcript

GPAT:

Glycerol-3-phosphate acyltransferase

LD:

Lipid droplet

lyso-PA:

1-acylglycerol-3-phosphate

MAG:

Monoacylglycerol

PA:

Phosphatidic acid

PAP:

Phosphatidate phosphatase

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

SE:

Sterol ester

TAG:

Triacylglycerol

References

  1. Pol A, Gross SP, Parton RG (2014) Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 204(5):635–646. doi:10.1083/jcb.201311051

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714. doi:10.1146/annurev-biochem-061009-102430

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kohlwein SD, Veenhuis M, van der Klei IJ (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat–store ‘em up or burn ‘em down. Genetics 193(1):1–50. doi:10.1534/genetics.112.143362

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Blaner WS, O’Byrne SM, Wongsiriroj N, Kluwe J, D’Ambrosio DM, Jiang H, Schwabe RF, Hillman EM, Piantedosi R, Libien J (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791(6):467–473. doi:10.1016/j.bbalip.2008.11.001

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RG, Liu P, Chapman KD (2007) Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48(4):837–847. doi:10.1194/jlr.M600413-JLR200

    CAS  PubMed  Google Scholar 

  6. Spanova M, Zweytick D, Lohner K, Klug L, Leitner E, Hermetter A (1821) Daum G (2012) Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 4:647–653. doi:10.1016/j.bbalip.2012.01.015

    Google Scholar 

  7. Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283(25):17065–17074. doi:10.1074/jbc.M800401200

    CAS  PubMed  Google Scholar 

  8. Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146(4):741–754

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Grillitsch K, Connerth M, Kofeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta 1811(12):1165–1176. doi:10.1016/j.bbalip.2011.07.015

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Radulovic M, Knittelfelder O, Cristobal-Sarramian A, Kolb D, Wolinski H, Kohlwein SD (2013) The emergence of lipid droplets in yeast: current status and experimental approaches. Curr Genet 59(4):231–242. doi:10.1007/s00294-013-0407-9

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Thiam AR, Farese RV Jr, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14(12):775–786. doi:10.1038/nrm3699

    CAS  PubMed  Google Scholar 

  12. Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang H (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180(3):473–482. doi:10.1083/jcb.200711136

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, Lin RC, Dawes IW, Brown AJ, Li P, Huang X, Parton RG, Wenk MR, Walther TC, Yang H (2011) A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 7(7):e1002201. doi:10.1371/journal.pgen.1002201

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang CW, Miao YH, Chang YS (2014) Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. J Cell Sci 127(Pt 6):1214–1228. doi:10.1242/jcs.137737

    PubMed  Google Scholar 

  15. Wang CW, Miao YH, Chang YS (2014) A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J Cell Biol 206(3):357–366. doi:10.1083/jcb.201404115

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Connerth M, Czabany T, Wagner A, Zellnig G, Leitner E, Steyrer E, Daum G (2010) Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast. J Biol Chem 285(35):26832–26841. doi:10.1074/jbc.M110.122085

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277(8):6478–6482. doi:10.1074/jbc.M109109200

    CAS  PubMed  Google Scholar 

  18. Sorger D, Daum G (2002) Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J Bacteriol 184(2):519–524

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97(12):6487–6492. doi:10.1073/pnas.120067297

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL (2000) A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem 275(21):15609–15612. doi:10.1074/jbc.C000144200

    CAS  PubMed  Google Scholar 

  21. Yu C, Kennedy NJ, Chang CC, Rothblatt JA (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase. J Biol Chem 271(39):24157–24163

    CAS  PubMed  Google Scholar 

  22. Kohlwein SD (2010) Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285(21):15663–15667. doi:10.1074/jbc.R110.118356

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277(11):8877–8881. doi:10.1074/jbc.M111646200

    CAS  PubMed  Google Scholar 

  24. Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: a two-gene process. Science 272(5266):1353–1356

    CAS  PubMed  Google Scholar 

  25. Zweytick D, Leitner E, Kohlwein SD, Yu C, Rothblatt J, Daum G (2000) Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur J Biochem FEBS 267(4):1075–1082

    CAS  Google Scholar 

  26. Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47(3):157–171

    CAS  PubMed  Google Scholar 

  27. Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD (1993) Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268(15):10946–10952

    CAS  PubMed  Google Scholar 

  28. Shirra MK, Patton-Vogt J, Ulrich A, Liuta-Tehlivets O, Kohlwein SD, Henry SA, Arndt KM (2001) Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 21(17):5710–5722

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281(1):491–500. doi:10.1074/jbc.M508414200

    CAS  PubMed  Google Scholar 

  30. Zanghellini J, Natter K, Jungreuthmayer C, Thalhammer A, Kurat CF, Gogg-Fassolter G, Kohlwein SD, von Grunberg HH (2008) Quantitative modeling of triacylglycerol homeostasis in yeast–metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth. The FEBS journal 275(22):5552–5563. doi:10.1111/j.1742-4658.2008.06681.x

    CAS  PubMed  Google Scholar 

  31. Athenstaedt K, Daum G (1999) Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem FEBS 266(1):1–16

    CAS  Google Scholar 

  32. Zheng Z, Zou J (2001) The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 276(45):41710–41716. doi:10.1074/jbc.M104749200

    CAS  PubMed  Google Scholar 

  33. Zaremberg V, McMaster CR (2002) Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. J Biol Chem 277(41):39035–39044. doi:10.1074/jbc.M207753200

    CAS  PubMed  Google Scholar 

  34. Marr N, Foglia J, Terebiznik M, Athenstaedt K, Zaremberg V (2012) Controlling lipid fluxes at glycerol-3-phosphate acyltransferase step in yeast: unique contribution of Gat1p to oleic acid-induced lipid particle formation. J Biol Chem 287(13):10251–10264. doi:10.1074/jbc.M111.314112

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A (2007) SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem 282(42):30845–30855. doi:10.1074/jbc.M702719200

    CAS  PubMed  Google Scholar 

  36. Ayciriex S, Le Guedard M, Camougrand N, Velours G, Schoene M, Leone S, Wattelet-Boyer V, Dupuy JW, Shevchenko A, Schmitter JM, Lessire R, Bessoule JJ, Testet E (2012) YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Mol Biol Cell 23(2):233–246. doi:10.1091/mbc.E11-07-0650

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Han GS, Wu WI, Carman GM (2006) The Saccharomyces cerevisiae Lipin homolog is a Mg2+ -dependent phosphatidate phosphatase enzyme. J Biol Chem 281(14):9210–9218. doi:10.1074/jbc.M600425200

    CAS  PubMed Central  PubMed  Google Scholar 

  38. O’Hara L, Han GS, Peak-Chew S, Grimsey N, Carman GM, Siniossoglou S (2006) Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+ -dependent phosphatidate phosphatase. J Biol Chem 281(45):34537–34548. doi:10.1074/jbc.M606654200

    PubMed Central  PubMed  Google Scholar 

  39. Carman GM, Han GS (2006) Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci 31(12):694–699. doi:10.1016/j.tibs.2006.10.003

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Carman GM, Zeimetz GM (1996) Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. J Biol Chem 271(23):13293–13296

    CAS  PubMed  Google Scholar 

  41. Carman GM, Henry SA (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38(5–6):361–399

    CAS  PubMed  Google Scholar 

  42. Hirsch JP, Henry SA (1986) Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol Cell Biol 6(10):3320–3328

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304(5677):1644–1647. doi:10.1126/science.1096083

    CAS  PubMed  Google Scholar 

  44. Han GS, O’Hara L, Siniossoglou S, Carman GM (2008) Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J Biol Chem 283(29):20443–20453. doi:10.1074/jbc.M802866200

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Fakas S, Qiu Y, Dixon JL, Han GS, Ruggles KV, Garbarino J, Sturley SL, Carman GM (2011) Phosphatidate phosphatase activity plays key role in protection against fatty acid-induced toxicity in yeast. J Biol Chem 286(33):29074–29085. doi:10.1074/jbc.M111.258798

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S, Kohlwein SD (2005) The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol Cell Proteomics MCP 4(5):662–672. doi:10.1074/mcp.M400123-MCP200

    CAS  Google Scholar 

  47. Gibellini F, Smith TK (2010) The Kennedy pathway–De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62(6):414–428. doi:10.1002/iub.337

    CAS  PubMed  Google Scholar 

  48. Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190(2):317–349. doi:10.1534/genetics.111.130286

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Zinser E, Paltauf F, Daum G (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol 175(10):2853–2858

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Jandrositz A, Turnowsky F, Hogenauer G (1991) The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization. Gene 107(1):155–160

    CAS  PubMed  Google Scholar 

  51. Leber R, Landl K, Zinser E, Ahorn H, Spok A, Kohlwein SD, Turnowsky F, Daum G (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 9(2):375–386

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Shi Z, Buntel CJ, Griffin JH (1994) Isolation and characterization of the gene encoding 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 91(15):7370–7374

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Milla P, Athenstaedt K, Viola F, Oliaro-Bosso S, Kohlwein SD, Daum G, Balliano G (2002) Yeast oxidosqualene cyclase (Erg7p) is a major component of lipid particles. J Biol Chem 277(4):2406–2412. doi:10.1074/jbc.M104195200

    CAS  PubMed  Google Scholar 

  54. Foresti O, Ruggiano A, Hannibal-Bach HK, Ejsing CS, Carvalho P (2013) Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. eLife 2:e00953. doi:10.7554/eLife.00953

    PubMed Central  PubMed  Google Scholar 

  55. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124(Pt 14):2424–2437. doi:10.1242/jcs.076836

    CAS  PubMed  Google Scholar 

  56. Guo Y, Cordes KR, Farese RV Jr, Walther TC (2009) Lipid droplets at a glance. J Cell Sci 122(Pt 6):749–752. doi:10.1242/jcs.037630

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Zanghellini J, Wodlei F, von Grunberg HH (2010) Phospholipid demixing and the birth of a lipid droplet. J Theor Biol 264(3):952–961. doi:10.1016/j.jtbi.2010.02.025

    CAS  PubMed  Google Scholar 

  58. Hussain MM (2000) A proposed model for the assembly of chylomicrons. Atherosclerosis 148(1):1–15

    CAS  PubMed  Google Scholar 

  59. Sorger D, Athenstaedt K, Hrastnik C, Daum G (2004) A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 279(30):31190–31196. doi:10.1074/jbc.M403251200

    CAS  PubMed  Google Scholar 

  60. Wang CW, Lee SC (2012) The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J Cell Sci 125(Pt 12):2930–2939. doi:10.1242/jcs.100230

    CAS  PubMed  Google Scholar 

  61. Choudhary V, Jacquier N, Schneiter R (2011) The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: implications for the biogenesis of lipid droplets. Commun Integr Biol 4(6):781–784

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Pagac M, de la Mora HV, Duperrex C, Roubaty C, Vionnet C, Conzelmann A (2011) Topology of 1-acyl-sn-glycerol-3-phosphate acyltransferases SLC1 and ALE1 and related membrane-bound O-acyltransferases (MBOATs) of Saccharomyces cerevisiae. J Biol Chem 286(42):36438–36447. doi:10.1074/jbc.M111.256511

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Frohlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV Jr, Walther TC (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24(4):384–399. doi:10.1016/j.devcel.2013.01.013

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192(6):1043–1055. doi:10.1083/jcb.201010111

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Skinner JR, Shew TM, Schwartz DM, Tzekov A, Lepus CM, Abumrad NA, Wolins NE (2009) Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J Biol Chem 284(45):30941–30948. doi:10.1074/jbc.M109.013995

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-Supprian M, Vance DE, Mann M, Farese RV Jr, Walther TC (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14(4):504–515. doi:10.1016/j.cmet.2011.07.013

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C (2011) Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 286(24):21330–21339. doi:10.1074/jbc.M110.202424

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Athenstaedt K, Daum G (2000) 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J Biol Chem 275(1):235–240

    CAS  PubMed  Google Scholar 

  69. Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RG, Goodman JM (2007) The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104(52):20890–20895. doi:10.1073/pnas.0704154104

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Fei W, Alfaro G, Muthusamy BP, Klaassen Z, Graham TR, Yang H, Beh CT (2008) Genome-wide analysis of sterol-lipid storage and trafficking in Saccharomyces cerevisiae. Eukaryot Cell 7(2):401–414. doi:10.1128/EC.00386-07

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Cartwright BR, Goodman JM (2012) Seipin: from human disease to molecular mechanism. J Lipid Res 53(6):1042–1055. doi:10.1194/jlr.R023754

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Binns D, Lee S, Hilton CL, Jiang QX, Goodman JM (2010) Seipin is a discrete homooligomer. Biochemistry 49(50):10747–10755. doi:10.1021/bi1013003

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM (2014) Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell. doi:10.1091/mbc.E14-08-1303

    PubMed  Google Scholar 

  74. Talukder MM, Sim MF, O’Rahilly S, Edwardson JM, Rochford JJ (2015) Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis. Mol Metab 4(3):199–209. doi:10.1016/j.molmet.2014.12.013

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Bi J, Wang W, Liu Z, Huang X, Jiang Q, Liu G, Wang Y, Huang X (2014) Seipin promotes adipose tissue fat storage through the ER Ca(2)(+)-ATPase SERCA. Cell Metab 19(5):861–871. doi:10.1016/j.cmet.2014.03.028

    CAS  PubMed  Google Scholar 

  76. Kadereit B, Kumar P, Wang WJ, Miranda D, Snapp EL, Severina N, Torregroza I, Evans T, Silver DL (2008) Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci USA 105(1):94–99. doi:10.1073/pnas.0708579105

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Gross DA, Snapp EL, Silver DL (2010) Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT) protein 2. PLoS One 5(5):e10796. doi:10.1371/journal.pone.0010796

    PubMed Central  PubMed  Google Scholar 

  78. Moir RD, Gross DA, Silver DL, Willis IM (2012) SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 8(8):e1002890. doi:10.1371/journal.pgen.1002890

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453(7195):657–661. doi:10.1038/nature06928

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG, Li P (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195(6):953–963. doi:10.1083/jcb.201104142

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Sun Z, Gong J, Wu H, Xu W, Wu L, Xu D, Gao J, Wu JW, Yang H, Yang M, Li P (2013) Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4:1594. doi:10.1038/ncomms2581

    PubMed Central  PubMed  Google Scholar 

  82. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306(5700):1383–1386. doi:10.1126/science.1100747

    CAS  PubMed  Google Scholar 

  83. Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, Shapiro L, Dolios G, Wang R, Lisanti MP, Brasaemle DL (2004) Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem 279(40):42062–42071. doi:10.1074/jbc.M407462200

    CAS  PubMed  Google Scholar 

  84. Gruber A, Cornaciu I, Lass A, Schweiger M, Poeschl M, Eder C, Kumari M, Schoiswohl G, Wolinski H, Kohlwein SD, Zechner R, Zimmermann R, Oberer M (2010) The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J Biol Chem 285(16):12289–12298. doi:10.1074/jbc.M109.064469

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Wang H, Bell M, Sreenivasan U, Hu H, Liu J, Dalen K, Londos C, Yamaguchi T, Rizzo MA, Coleman R, Gong D, Brasaemle D, Sztalryd C (2011) Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein. J Biol Chem 286(18):15707–15715. doi:10.1074/jbc.M110.207779

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281(52):40236–40241. doi:10.1074/jbc.M608048200

    CAS  PubMed  Google Scholar 

  87. Taschler U, Radner FP, Heier C, Schreiber R, Schweiger M, Schoiswohl G, Preiss-Landl K, Jaeger D, Reiter B, Koefeler HC, Wojciechowski J, Theussl C, Penninger JM, Lass A, Haemmerle G, Zechner R, Zimmermann R (2011) Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem 286(20):17467–17477. doi:10.1074/jbc.M110.215434

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Heier C, Taschler U, Rengachari S, Oberer M, Wolinski H, Natter K, Kohlwein SD, Leber R, Zimmermann R (2010) Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1801(9):1063–1071. doi:10.1016/j.bbalip.2010.06.001

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Athenstaedt K, Daum G (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem 278(26):23317–23323. doi:10.1074/jbc.M302577200

    CAS  PubMed  Google Scholar 

  90. Athenstaedt K, Daum G (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem 280(45):37301–37309. doi:10.1074/jbc.M507261200

    CAS  PubMed  Google Scholar 

  91. Daum G, Wagner A, Czabany T, Athenstaedt K (2007) Dynamics of neutral lipid storage and mobilization in yeast. Biochimie 89(2):243–248. doi:10.1016/j.biochi.2006.06.018

    CAS  PubMed  Google Scholar 

  92. Koch B, Schmidt C, Ploier B, Daum G (2014) Modifications of the C terminus affect functionality and stability of yeast triacylglycerol lipase Tgl3p. J Biol Chem 289(28):19306–19316. doi:10.1074/jbc.M114.556944

    CAS  PubMed  Google Scholar 

  93. Kurat CF, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein SD (2009) Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33(1):53–63. doi:10.1016/j.molcel.2008.12.019

    CAS  PubMed  Google Scholar 

  94. Rajakumari S, Rajasekharan R, Daum G (2010) Triacylglycerol lipolysis is linked to sphingolipid and phospholipid metabolism of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1801(12):1314–1322. doi:10.1016/j.bbalip.2010.08.004

    CAS  PubMed  Google Scholar 

  95. Ploier B, Scharwey M, Koch B, Schmidt C, Schatte J, Rechberger G, Kollroser M, Hermetter A, Daum G (2013) Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae. J Biol Chem 288(50):36061–36072. doi:10.1074/jbc.M113.509927

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Thoms S, Debelyy MO, Connerth M, Daum G, Erdmann R (2011) The putative Saccharomyces cerevisiae hydrolase Ldh1p is localized to lipid droplets. Eukaryot Cell 10(6):770–775. doi:10.1128/EC.05038-11

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Debelyy MO, Thoms S, Connerth M, Daum G, Erdmann R (2011) Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis. Eukaryot Cell 10(6):776–781. doi:10.1128/EC.05040-11

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Koffel R, Tiwari R, Falquet L, Schneiter R (2005) The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol 25(5):1655–1668. doi:10.1128/MCB.25.5.1655-1668.2005

    PubMed Central  PubMed  Google Scholar 

  99. Mullner H, Deutsch G, Leitner E, Ingolic E, Daum G (2005) YEH2/YLR020c encodes a novel steryl ester hydrolase of the yeast Saccharomyces cerevisiae. J Biol Chem 280(14):13321–13328. doi:10.1074/jbc.M409914200

    PubMed  Google Scholar 

  100. Koffel R, Schneiter R (2006) Yeh1 constitutes the major steryl ester hydrolase under heme-deficient conditions in Saccharomyces cerevisiae. Eukaryot Cell 5(7):1018–1025. doi:10.1128/EC.00002-06

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Wagner A, Grillitsch K, Leitner E, Daum G (2009) Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1791(2):118–124. doi:10.1016/j.bbalip.2008.11.004

    CAS  PubMed  Google Scholar 

  102. Markgraf DF, Klemm RW, Junker M, Hannibal-Bach HK, Ejsing CS, Rapoport TA (2014) An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Reports 6(1):44–55. doi:10.1016/j.celrep.2013.11.046

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51(3):468–471. doi:10.1194/jlr.R000034

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RG, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173(5):719–731. doi:10.1083/jcb.200511125

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Currie E, Guo X, Christiano R, Chitraju C, Kory N, Harrison K, Haas J, Walther TC, Farese RV Jr (2014) High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J Lipid Res 55(7):1465–1477. doi:10.1194/jlr.M050229

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181(20):6441–6448

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181(20):6441–6448

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Neuber O, Jarosch E, Volkwein C, Walter J, Sommer T (2005) Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat Cell Biol 7(10):993–998. doi:10.1038/ncb1298

    CAS  PubMed  Google Scholar 

  109. Surma MA, Klose C, Peng D, Shales M, Mrejen C, Stefanko A, Braberg H, Gordon DE, Vorkel D, Ejsing CS, Farese R Jr, Simons K, Krogan NJ, Ernst R (2013) A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 51(4):519–530. doi:10.1016/j.molcel.2013.06.014

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Kolawa N, Sweredoski MJ, Graham RL, Oania R, Hess S, Deshaies RJ (2013) Perturbations to the ubiquitin conjugate proteome in yeast deltaubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol Cell Proteomics MCP 12(10):2791–2803. doi:10.1074/mcp.M113.030163

    CAS  Google Scholar 

  111. Olzmann JA, Kopito RR (2011) Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J Biol Chem 286(32):27872–27874. doi:10.1074/jbc.C111.266452

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wolinski H, Kolb D, Hermann S, Koning RI, Kohlwein SD (2011) A role for seipin in lipid droplet dynamics and inheritance in yeast. J Cell Sci 124(Pt 22):3894–3904. doi:10.1242/jcs.091454

    CAS  PubMed  Google Scholar 

  113. van den Hazel HB, Pichler H, do Valle Matta MA, Leitner E, Goffeau A, Daum G (1999) PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J Biol Chem 274(4):1934–1941

    PubMed  Google Scholar 

  114. Ren J, Pei-Chen Lin C, Pathak MC, Temple BR, Nile AH, Mousley CJ, Duncan MC, Eckert DM, Leiker TJ, Ivanova PT, Myers DS, Murphy RC, Brown HA, Verdaasdonk J, Bloom KS, Ortlund EA, Neiman AM, Bankaitis VA (2014) A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis. Mol Biol Cell 25(5):712–727. doi:10.1091/mbc.E13-11-0634

    PubMed Central  PubMed  Google Scholar 

  115. Pu J, Ha CW, Zhang S, Jung JP, Huh WK, Liu P (2011) Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2(6):487–496. doi:10.1007/s13238-011-1061-y

    CAS  PubMed  Google Scholar 

  116. Lafer G, Szolderits G, Paltauf F, Daum G (1991) Isolation of a phosphatidylserine transfer protein from yeast cytosol. Biochim Biophys Acta 1069(2):139–144

    CAS  PubMed  Google Scholar 

  117. Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman MJ, Miyamura T, Brechot C (1997) Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci USA 94(4):1200–1205

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Abell BM, Holbrook LA, Abenes M, Murphy DJ, Hills MJ, Moloney MM (1997) Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9(8):1481–1493. doi:10.1105/tpc.9.8.1481

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6(7):911–927

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R (2001) Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol 152(5):1079–1085

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152(5):1071–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Zehmer JK, Bartz R, Bisel B, Liu P, Seemann J, Anderson RG (2009) Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci 122(pt 20):3694–3702. doi:10.1242/jcs.054700

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Turro S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernandez MA, Albor CV, Gaus K, Grewal T, Enrich C, Pol A (2006) Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7(9):1254–1269

    CAS  PubMed  Google Scholar 

  124. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(Pt 12):2601–2611. doi:10.1242/jcs.02401

    CAS  PubMed  Google Scholar 

  125. Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C (2003) Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol 161(6):1093–1103. doi:10.1083/jcb.200210169

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Garbarino J, Sturley SL (2005) Homoeostatic systems for sterols and other lipids. Biochem Soc Trans 33(Pt 5):1182–1185. doi:10.1042/BST20051182

    CAS  PubMed  Google Scholar 

  127. Han GS, Siniossoglou S, Carman GM (2007) The cellular functions of the yeast lipin homolog PAH1p are dependent on its phosphatidate phosphatase activity. J Biol Chem 282(51):37026–37035. doi:10.1074/jbc.M705777200

    CAS  PubMed  Google Scholar 

  128. Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, Kohlwein SD (2009) Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 284(45):30981–30993. doi:10.1074/jbc.M109.024752

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Rockenfeller P, Ring J, Muschett V, Beranek A, Buettner S, Carmona-Gutierrez D, Eisenberg T, Khoury C, Rechberger G, Kohlwein SD, Kroemer G, Madeo F (2010) Fatty acids trigger mitochondrion-dependent necrosis. Cell Cycle 9(14):2836–2842 12346 [pii]

    CAS  PubMed  Google Scholar 

  130. Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S (2005) The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J 24(11):1931–1941. doi:10.1038/sj.emboj.7600672

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Carman GM, Han GS (2009) Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem 284(5):2593–2597. doi:10.1074/jbc.R800059200

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S (2010) A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc Natl Acad Sci USA 107(41):17539–17544. doi:10.1073/pnas.1007974107

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Choi HS, Su WM, Morgan JM, Han GS, Xu Z, Karanasios E, Siniossoglou S, Carman GM (2011) Phosphorylation of phosphatidate phosphatase regulates its membrane association and physiological functions in Saccharomyces cerevisiae: identification of SER(602), THR(723), AND SER(744) as the sites phosphorylated by CDC28 (CDK1)-encoded cyclin-dependent kinase. J Biol Chem 286(2):1486–1498. doi:10.1074/jbc.M110.155598

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135. doi:10.1038/nature07976

    CAS  PubMed Central  PubMed  Google Scholar 

  135. van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD (2014) Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 25(2):290–301. doi:10.1091/mbc.E13-08-0448

    PubMed Central  PubMed  Google Scholar 

  136. Toulmay A, Prinz WA (2013) Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J Cell Biol 202(1):35–44. doi:10.1083/jcb.201301039

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Neiman AM (2011) Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189(3):737–765. doi:10.1534/genetics.111.127126

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Rajakumari S, Daum G (2010) Janus-faced enzymes yeast Tgl3p and Tgl5p catalyze lipase and acyltransferase reactions. Mol Biol Cell 21(4):501–510. doi:10.1091/mbc.E09-09-0775

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Lam C, Santore E, Lavoie E, Needleman L, Fiacco N, Kim C, Neiman AM (2014) A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot Cell 13(3):383–391. doi:10.1128/EC.00333-13

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Lin CP, Kim C, Smith SO, Neiman AM (2013) A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae. PLoS Genet 9(8):e1003700. doi:10.1371/journal.pgen.1003700

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS (1980) Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87(1):180–196

    CAS  PubMed  Google Scholar 

  142. Krahmer N, Farese RV Jr, Walther TC (2013) Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5(7):905–915. doi:10.1002/emmm.201100671

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R (2009) Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 297(2):E289–E296. doi:10.1152/ajpendo.00099.2009

    CAS  PubMed  Google Scholar 

  144. Vigouroux C, Caron-Debarle M, Le Dour C, Magre J, Capeau J (2011) Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol 43(6):862–876. doi:10.1016/j.biocel.2011.03.002

    CAS  PubMed  Google Scholar 

  145. Fei W, Du X, Yang H (2011) Seipin, adipogenesis and lipid droplets. Trend Endocrinol Metab TEM 22(6):204–210. doi:10.1016/j.tem.2011.02.004

    CAS  Google Scholar 

Download references

Acknowledgments

I thank Dr. Rey-Huei Chen at the Institute of Molecular Biology, Academia Sinica, for reading the manuscript and her helpful commentary and Miss Yu-Chun Weng at the Institute of Plant and Microbial Biology, Academia Sinica, for help with art and design work. This work was supported by an intramural fund from Academia Sinica and the grants NSC 101-2311-B-001-028-MY3 and 103-2633-B-001-003 from the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CW. Lipid droplet dynamics in budding yeast. Cell. Mol. Life Sci. 72, 2677–2695 (2015). https://doi.org/10.1007/s00018-015-1903-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1903-5

Keywords

Navigation