Skip to main content

Advertisement

Log in

Biotechnological processes for biodiesel production using alternative oils

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altiparmak D, Keskin A, Koca A, Gürü M (2007) Alternative fuel properties of tall oil fatty acid methyl ester–diesel fuel blends. Bioresour Technol 98:241–246

    Article  CAS  Google Scholar 

  • Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  Google Scholar 

  • Alvarez H, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223

    Article  CAS  Google Scholar 

  • Azócar L, Ciudad G, Heipieper HJ, Muñoz R, Navia R (2010) Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock. J Biosci Bioeng 109:609–614

    Article  Google Scholar 

  • Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8:39–43

    Article  CAS  Google Scholar 

  • Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H (2002) Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B: Enzym 17:157–165

    Article  CAS  Google Scholar 

  • Barnwal B, Sharma M (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev 9:363–378

    Article  Google Scholar 

  • Beal R (1975) Feed additive for poultry from soybean oil soapstocks. US Pat Appl 3916031. Filed 31 Jan 1973

  • Campbell C (2006) The Rimini protocol an oil depletion protocol: heading off economic chaos and political conflict during the second half of the age of oil. Energ Policy 34:1319–1325

    Article  Google Scholar 

  • Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190

    Article  CAS  Google Scholar 

  • Carraretto C, Macor A, Mirandola A, Stoppato A, Tonon S (2004) Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy 29:2195–2211

    Article  CAS  Google Scholar 

  • Chen J, Wu W (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469

    CAS  Google Scholar 

  • Chen X, Du W, Liu D (2008) Response surface optimization of biocatalytic biodiesel production with acid oil. Biochem Eng J 40:423–429

    Article  CAS  Google Scholar 

  • Chen Y, Xiao B, Chang J, Fu Y, Lv P, Wang X (2009) Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Energ Convers Manage 50:668–673

    Article  CAS  Google Scholar 

  • Chhetri A, Tango M, Budge S, Watts K, Islam M (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9:169–180

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energ Combust 31:466–487

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energ Convers Manage 50:14–34

    Article  CAS  Google Scholar 

  • Dizge N, Aydiner C, Imer DY, Bayramoglu M, Tanriseven A, Keskinlera B (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100:1983–1991

    Article  CAS  Google Scholar 

  • Dossin T, Reyniers M, Berger R, Marin G (2006) Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Appl Catal B-Environ 67:136–148

    Article  CAS  Google Scholar 

  • Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B-Enzym 30:125–129

    Article  CAS  Google Scholar 

  • Du W, Xu Y, Liu D, Li Z (2005) Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J Mol Catal B-Enzym 37:68–71

    Article  CAS  Google Scholar 

  • Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79:331–337

    Article  CAS  Google Scholar 

  • Elbahloul Y, Steinbüchel A (2010) Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid. Appl Environ Microb 76:4560–4565

    Article  CAS  Google Scholar 

  • Escobar J, Lora E, Venturini O, Yanez E, Castillo E, Almazan O (2009) Biofuels: Environment, technology and food security. Renew Sust Energ Rev 13:1275–1287

    Article  CAS  Google Scholar 

  • FAO (2009) Undernourishment around the world. The state of food in security in the world. ftp://ftp.fao.org/docrep/fao/012/i0876e/i0876e02.pdf. Accessed 4 June 2010

  • Felizardo P, Correia M, Raposo I, Mendes J, Berkemeier R, Bordado J (2006) Production of biodiesel from waste frying oil. Waste Manage 26:487–494

    Article  CAS  Google Scholar 

  • Fjerbaek L, Christensen K, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

    Article  CAS  Google Scholar 

  • Gui M, Lee K, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33:1646–1653

    Article  CAS  Google Scholar 

  • Gustone F (2009) Lipids as source of food and fuel—will there be enough? Dissertation, 2nd International Congress on Biodiesel: The Science and The Technologies Munich, Germany

  • Haas M (2005) Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol 86:1087–1096

    Article  CAS  Google Scholar 

  • Halim S, Kamaruddin A (2008) Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochem 43:1436–1439

    Article  CAS  Google Scholar 

  • Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A, Fukuda H (2006) Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng 101:328–333

    Article  CAS  Google Scholar 

  • Hama S, Yamaji H, Fukumizu T, Numata T, Tamalampudi S, Kondo A, Noda H, Fukuda H (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhyzopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278

    Article  CAS  Google Scholar 

  • Hassan M, Blanc P, Granger L, Pareilleux A, Goma G (1996) Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem 31:355–361

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energ 87:38–46

    Article  CAS  Google Scholar 

  • IEA (2009) Key world energy statistics. International Energy Agency. http://www.iea.org/textbase/nppdf/free/2009/key_stats_2009.pdf. Accessed 4 June 2010

  • Kaieda M, Samukawa T, Kondo A, Fukuda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiol 152:2529–2536

    Article  CAS  Google Scholar 

  • Kulkarni M, Dalai A (2006) Waste cooking oils an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  • Lara P, Park E (2004) Potential application of waste activated bleaching earth on the production of fatty acid alkyl esters using Candida cylindracea lipase in organic solvent system. Enzyme Microb Tech 34:270–277

    Article  CAS  Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051

    Article  CAS  Google Scholar 

  • Leman J (2009) Lipids Production. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. San Diego State University, California, pp 393–406

    Google Scholar 

  • Leung D, Guo Y (2006) Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol 87:883–890

    Article  CAS  Google Scholar 

  • Li L, Du W, Liu D, Wang L, Li Z (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B-Enzym 43:58–62

    Article  CAS  Google Scholar 

  • Li W, Du W, Liu D (2007a) Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology. J Mol Catal B-Enzym 45:122–127

    Article  CAS  Google Scholar 

  • Li W, Du W, Liu D (2007b) Rhizopus oryzae IFO 4697 whole cell-catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol System. Process Biochem 42:1481–1485

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008a) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biot 80:749–756

    Article  CAS  Google Scholar 

  • Li W, Du W, Liu D, Yao Y (2008b) Study on factors influencing stability of whole cell during biodiesel production in solvent-free and tert-butanol system. Biochem Eng J 41:111–115

    Article  CAS  Google Scholar 

  • Li N, Zong M, Wu H (2009) Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem 44:685–688

    Article  CAS  Google Scholar 

  • Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  CAS  Google Scholar 

  • Maceiras R, Vega M, Costa C, Ramos P, Márquez M (2009) Effect of methanol content on enzymatic production of biodiesel from waste frying oil. Fuel 88:2130–2134

    Article  CAS  Google Scholar 

  • Marchetti J, Miguel V, Errazu A (2007) Possible methods for biodiesel production. Renew Sust Energ Rev 11:1300–1311

    Article  CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34:1–5

    Article  Google Scholar 

  • Metzger P, Largeau C, Casadevall E (1991) Lipids and macromolecular lipids of the hydrocarbon-rich microalga Botryococus braunii. Chemical structure and biosynthesis. Geochemical and biotechnological importance. In: Herz W, Kirby GW, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products. Springer, Berlin, pp 1–70

    Google Scholar 

  • Metzger P, Rager M, Fosse C (2008) Braunicetals: Acetals from condensation of macrocyclic aldehydes and terpene diols in Botryococcus braunii. Phytochemistry 69:2380–2386

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  Google Scholar 

  • Nie K, Feng X, Fang W, Tianwei T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B-Enzym 43:142–147

    Article  CAS  Google Scholar 

  • Noureddini H, Gao X, Philkana R (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technol 96:769–777

    Article  CAS  Google Scholar 

  • Oda M, Kaieda M, Hama S, Yamaji H, Kondo A, Izumoto E, Fukuda H (2005) Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochem Eng J 23:45–51

    Article  CAS  Google Scholar 

  • Orcaire O, Buisson P, Pierre A (2006) Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J Mol Catal B-Enzym 42:106–113

    Article  CAS  Google Scholar 

  • Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291

    Article  CAS  Google Scholar 

  • Parawira W (2009) Biotechnological production of biodiesel fuel using biocatalyzed transesterification: a review. Crit Rev Biotechnol 29:82–93

    Article  CAS  Google Scholar 

  • Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energ Buildings 40:394–398

    Article  Google Scholar 

  • Pessoa F, Magalhães S, Falcão P (2010) Production of biodiesel via enzymatic ethanolysis of the sunflower and soybean oils: modeling. Appl Biochem Biotechnol 161:238–244

    Article  CAS  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69

    Article  CAS  Google Scholar 

  • Ramadhas A, Jayaraj S, Muraleedharan C (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84:335–340

    Article  CAS  Google Scholar 

  • Röttig A, Wenning L, Bröker D, Steinbüchel A (2010) Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85:1713–1733

    Article  Google Scholar 

  • Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

    Article  CAS  Google Scholar 

  • Salis A, Pinna M, Monduzzi M, Solinas V (2005) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119:291–299

    Article  CAS  Google Scholar 

  • Samorì C, Torri C, Samorì G, Fabbri D, Galletti P, Guerrini F, Pistocchi R, Tagliavini E (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol 101:3274–3279. doi:10.1016/j.biortech.2009.12.068

    Article  Google Scholar 

  • Sarin R, Sharma M, Sinharay S, Malhotra R (2007) Jatropha–palm biodiesel blends: an optimum mix for Asia. Fuel 86:1365–1371

    Article  CAS  Google Scholar 

  • Sato S, Bueno De Almeida W, Araujo A (2008) Biodiesel production from soapstock. US Pat Appl 2008/0118961A1. Filed 09 Nov 2004

  • Scholz V, Nogueira da Silva J (2008) Review: prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg 32:95–100

    Article  CAS  Google Scholar 

  • Shah S, Gupta M (2007) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem 42:409–414

    Article  CAS  Google Scholar 

  • Sharma Y, Singh B, Korstad J (2010) High yield and conversion of biodiesel from a nonedible feedstock (Pongamia pinnata). J Agr Food Chem 58:242–247

    Article  CAS  Google Scholar 

  • Shieh C, Liao H, Lee C (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour Technol 88:103–106

    Article  CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B-Enzym 17:133–142

    Article  CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Sousa L, Lucena I, Fernandes F (2010) Transesterification of castor oil: effect of the acid value and neutralization of the oil with glycerol. Fuel Process Technol 91:194–196

    Article  CAS  Google Scholar 

  • Suehara K, Kawamoto Y, Fujii E, Kohda J, Nakano Y, Yano T (2005) Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. J Biosci Bioeng 100:437–442

    Article  CAS  Google Scholar 

  • Talukder M, Wu J, Van Nguyen T, Fen N, Melissa Y (2009) Novozym 435 for production of biodiesel from unrefined palm oil: comparison of methanolysis methods. J Mol Catal B-Enzym 60:106–112

    Article  CAS  Google Scholar 

  • Tamalampudi S, Talukder M, Hama S, Numata T, Kondo A, Fukuda H (2008) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39:185–189

    Article  CAS  Google Scholar 

  • US Census Bureau (2010) International Data Base, world population summary. http://www.census.gov/ipc/www/idb/worldpopinfo.php. Accessed 6 June 2010

  • Uthoff S, Bröker D, Steinbüchel A (2009) Minireview: current state and perspectives of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2:551–565

    Article  CAS  Google Scholar 

  • Veljkovic V, Lakicevic S, Stamenkovic O, Todorovic Z, Lazic M (2006) Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel 85:2671–2675

    Article  CAS  Google Scholar 

  • Vicente G, Bautista L, Rodriguez R, Gutiérrez F, Sádaba I, Ruiz-Vázquez R, Torres-Martínez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27

    Article  CAS  Google Scholar 

  • Wang L, Du W, Liu D, Li L, Dai N (2006a) Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J Mol Catal B-Enzym 43:29–32

    Article  CAS  Google Scholar 

  • Wang Y, Ou S, Liu P, Xue F, Tang S (2006b) Comparison of two different processes to synthesize biodiesel by waste cooking oil. J Mol Catal A-Chem 252:107–112

    Article  CAS  Google Scholar 

  • Wang Y, Ou S, Liu P, Zhang Z (2006c) Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energ Convers Manage 48:184–188

    Article  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biot 78:29–36

    Article  CAS  Google Scholar 

  • Xu G, Zhang B, Liu S, Yue J (2006a) Study on immobilized lipase catalyzed transesterification reaction of tung oil. Agr Sci China 5:859–864

    CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006b) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  • Xue F, Miao J, Zhang X, Luo H, Tan T (2008) Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol 99:5923–5927

    Article  CAS  Google Scholar 

  • Zeng J, Du W, Liu X, Liu D, Dai L (2006) Study on the effect of cultivation parameters and pretreatment on Rhyzopus oryzae cell-catalyzed transesterification of vegetable oils for biodiesel production. J Mol Catal B-Enzym 43:15–18

    Article  CAS  Google Scholar 

  • Zhang Y, Dube M, McLean D, Kates M (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour Technology 89:1–16

    Article  CAS  Google Scholar 

  • Zheng S, Kates M, Dube M, McLean D (2006) Acid-catalyzed production of biodiesel from waste frying oil. Biomass Bioenerg 30:267–272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chilean PBCT-CONICYT project TPI-16, FONDECYT project 1090382, and CONICYT project 79090009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Navia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azócar, L., Ciudad, G., Heipieper, H.J. et al. Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88, 621–636 (2010). https://doi.org/10.1007/s00253-010-2804-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2804-z

Keywords

Navigation