Skip to main content
Log in

Screening of Oleaginous Yeast Strains Tolerant to Lignocellulose Degradation Compounds

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

High cost of triacylglycerol lipid feedstock is the major barrier for commercial production of biodiesel. The fermentation of oleaginous yeasts for lipid production using lignocellulose biomass provides a practical option with high economic competitiveness. In this paper, the typical oleaginous yeast strains were screened under the pressure of lignocellulose degradation compounds for selection of the optimal strains tolerant to lignocellulose. The inhibitory effect of lignocellulose degradation products on the oleaginous yeast fermentation was carefully investigated. Preliminary screening was carried out in the minimum nutritious medium without adding any expensive complex ingredients then was carried out in the lignocellulosic hydrolysate pretreated by dilute sulfuric acid. Seven typical lignocellulose degradation products formed in various pretreatment and hydrolysis processing were selected as the model inhibitors, including three organic acids, two furan compounds, and two phenol derivatives. The inhibition of the degradation compounds on the cell growth and lipid productivity of the selected oleaginous yeasts were examined. Acetic acid, formic acid, furfural, and vanillin were found to be the strong inhibitors for the fermentation of oleaginous yeasts, while levulinic acid, 5-hydroxymethylfurfural, and hydroxybenzaldehyde were relatively weak inhibitors. Trichosporon cutaneum 2.1374 was found to be the most adopted strain to the lignocellulose degradation compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pizarro, A. V. L., & Enoch, Y. P. (2003). Process Biochemistry, 38, 1077–1082. doi:10.1016/S0032-9592(02)00241-8.

    Article  Google Scholar 

  2. Han, H. W., Cao, W. L., & Zhang, J. C. (2005). Process Biochemistry, 40, 3148–3151. doi:10.1016/j.procbio.2005.03.014.

    Article  CAS  Google Scholar 

  3. Ma, F., & Hanna, M. A. (1999). Bioresource Technology, 70, 1–15. doi:10.1016/S0960-8524(99)00025-5.

    Article  CAS  Google Scholar 

  4. Allen, C. A. W., Watts, K. C., Ackman, R. G., & Pegg, M. J. (1999). Fuel, 78, 1319–1326. doi:10.1016/S0016-2361(99)00059-9.

    Article  CAS  Google Scholar 

  5. Leunc, D. Y. C. (2001). Water, Air, and Soil Pollution, 130, 277–282. doi:10.1023/A:1013883823851.

    Article  Google Scholar 

  6. Tyson, K. S. (1998). NREL Technical Report, NREL/TP-580-24443.

  7. Gerpen, J. V. (2004). NREL Technical Report, NREL/SR-510-36342.

  8. Claassen, P. A., Sijtsma, L., Stams, A. J. M., de Vries, S. S., & Weusthuis, R. A. (1999). Applied Microbiology and Biotechnology, 52, 741–745. doi:10.1007/s002530051586.

    Article  CAS  Google Scholar 

  9. Wahlbom, C. F., & Hahn-Hagerdal, B. (2002). Biotechnology and Bioengineering, 78, 172–178. doi:10.1002/bit.10188.

    Article  CAS  Google Scholar 

  10. Parajo, J. C., Dominguez, H., & Dominguez, J. M. B. (1998). Bioresource Technology, 66, 25–40. doi:10.1016/S0960-8524(98)00037-6.

    Article  CAS  Google Scholar 

  11. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 25–33. doi:10.1016/S0960-8524(99)00161-3.

    Article  CAS  Google Scholar 

  12. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26. doi:10.1007/s00253-004-1642-2.

    Article  CAS  Google Scholar 

  13. Ratledge, C., & Wynn, J. P. (2002). Advances in Applied Microbiology, 51, 1–51. doi:10.1016/S0065-2164(02)51000-5.

    Article  CAS  Google Scholar 

  14. Ray, F., Patricia, P., & Dlane, S. (1984). Applied and Environmental Microbiology, 47, 1130–1134.

    Google Scholar 

  15. Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N. O., & Jonsson, L. J. (2000). Applied Biochemistry and Biotechnology, 84/86, 617–632. doi:10.1385/ABAB:84-86:1-9:617.

    Article  Google Scholar 

  16. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). Enzyme and Microbial Technology, 24, 151–159. doi:10.1016/S0141-0229(98)00101-X.

    Article  CAS  Google Scholar 

  17. Folsch, J., Lees, M., & Sloane-stanley, G. H. (1957). Journal of Biochemistry, 226, 449–509.

    Google Scholar 

  18. Kamm, B., Gruber, P. R., & Kamm, M. (2006). Biorefinery—Industrial processes and products. Weiheim: Wiley.

    Google Scholar 

Download references

Acknowledgement

This research was supported by Ministry of Education of China (Grant No. 107123), PetroChina Co. Ltd (Grant No. 060511-4-7), and China National Special Fund for State Key Laboratory of Bioreactor Engineering (Grant No. 2060204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Li, Z., Zhang, X. et al. Screening of Oleaginous Yeast Strains Tolerant to Lignocellulose Degradation Compounds. Appl Biochem Biotechnol 159, 591–604 (2009). https://doi.org/10.1007/s12010-008-8491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8491-x

Keywords

Navigation