Skip to main content

Toward Sustainable Amino Acid Production

  • Chapter
  • First Online:
Amino Acid Fermentation

Abstract

Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blattner FR, Plunkett G 3rd, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  CAS  PubMed  Google Scholar 

  2. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2-3):99–109

    Article  CAS  PubMed  Google Scholar 

  3. Kalinowski J, Bathe B, Bartels D et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1-3):5–25

    Article  CAS  PubMed  Google Scholar 

  4. Nishio Y, Nakamura Y, Kawarabayasi Y et al (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13(7):1572–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yukawa H, Omumasaba CA, Nonaka H et al (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153(Pt 4):1042–1058

    Article  CAS  PubMed  Google Scholar 

  6. Lv Y, Liao J, Wu Z et al (2012) Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria. J Bacteriol 194(3):742–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nishio Y, Koseki C, Tonouchi N et al (2016) Analysis of strain-specific genes found in glutamic acid producing strain, Corynebacterium glutamicum ssp. lactofermentum. J Gen Appl Microbiol, submitted

    Google Scholar 

  8. Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development. Curr Opin Biotechnol 23(5):718–726. doi:10.1016/j.copbio.2011.12.025

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda M, Ohnishi J, Hayashi M et al (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. Ind Microbiol Biotechnol 33(7):610–615

    Article  CAS  Google Scholar 

  10. Poetsch A, Haussmann U, Burkovski A (2011) Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 11(15):3244–3255. doi:10.1002/pmic.201000786

    Article  CAS  PubMed  Google Scholar 

  11. Takors R, Bathe B, Rieping M et al (2007) Systems biology for industrial strains and fermentation processes-example: amino acids. J Biotechnol 129(2):181–190

    Article  CAS  PubMed  Google Scholar 

  12. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, San Diego

    Google Scholar 

  13. Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41(6):633–646

    Article  CAS  PubMed  Google Scholar 

  14. Iwatani S, Yamada Y, Usuda Y (2008) Metabolic flux analysis in biotechnology processes. Biotechnol Lett 30(5):791–799. doi:10.1007/s10529-008-9633-5

    Article  CAS  PubMed  Google Scholar 

  15. Shirai T, Shimizu H (2015) Developing interpretation of intracellular metabolism of Corynebacterium glutamicum by using flux analysis technology. In: Burkovski A (ed) Corynebacterium glutamicum: From systems biology to biotechnological applications. Caister Academic Press, Norfolk, pp 25–38

    Chapter  Google Scholar 

  16. Shimizu K (2009) Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J 46(3):235–251

    Article  CAS  Google Scholar 

  17. McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9:661. doi:10.1038/msb.2013.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zelle E, Nöh K, Wiechert W (2015) Growth and production capabilities of Corynebacterium glutamicum: interrogating a genome-scale metabolic network model. In: Burkowski A (ed) Corynebacterium glutamicum: from systems biology to biotechnological applications. Caister Academic Press, Norfolk, pp 39–54

    Google Scholar 

  19. Almquist J, Cvijovic M, Hatzimanikatis V et al (2014) Kinetic models in industrial biotechnology - Improving cell factory performance. Metab Eng 24:38–60. doi:10.1016/j.ymben.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  20. Nishio Y, Usuda Y, Matsui K et al (2008) Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol Syst Biol 4:160. doi:10.1038/msb4100201

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Gilles ED, Lengeler JW et al (2001) Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification. J Biotechnol 92(2):133–158

    Article  CAS  PubMed  Google Scholar 

  22. Chassagnole C, Noisommit-Rizzi N, Schmid JW et al (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79(1):53–73

    Article  CAS  PubMed  Google Scholar 

  23. Usuda Y, Nishio Y, Iwatani S et al (2010) Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. J Biotechnol 147(1):17–30. doi:10.1016/j.jbiotec.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  24. Nishio Y, Ogishima S, Ichikawa M et al (2013) Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Syst Biol 7:92. doi:10.1186/1752-0509-7-92

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58. doi:10.1016/j.copbio.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  26. Chinen A, Kozlov YI, Hara Y et al (2007) Innovative metabolic pathway design for efficient L-glutamate production by suppressing CO2 emission. J Biosci Bioeng 103(3):262–269

    Article  CAS  PubMed  Google Scholar 

  27. Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502(7473):693–697. doi:10.1038/nature12575

    Article  CAS  PubMed  Google Scholar 

  28. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39(2):217–226. doi:10.1007/s10295-011-1038-0

    Article  CAS  PubMed  Google Scholar 

  29. Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74(20):6216–6222. doi:10.1128/AEM.00963-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meiswinkel TM, Rittmann D, Lindner SN et al (2013) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258. doi:10.1016/j.biortech.2013.02.053

    Article  CAS  PubMed  Google Scholar 

  31. Kawaguchi H, Vertes AA, Okino S et al (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154(2-3):191–198. doi:10.1016/j.jbiotec.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  33. Meiswinkel TM, Gopinath V, Lindner SN et al (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine, and putrescine. Microb Biotechnol 6(2):131–140. doi:10.1111/1751-7915.12001

    Article  PubMed  Google Scholar 

  34. Gopinath V, Meiswinkel TM, Wendisch VF et al (2011) Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 92(5):985–996. doi:10.1007/s00253-011-3478-x

    Article  CAS  PubMed  Google Scholar 

  35. Johnsen U, Dambeck M, Zaiss H et al (2009) D-Xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J Biol Chem 284(40):27290–27303. doi:10.1074/jbc.M109.003814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stephens C, Christen B, Fuchs T et al (2007) Genetic analysis of a novel pathway for d-xylose metabolism in Caulobacter crescentus. J Bacteriol 189:2181–2185

    Article  CAS  PubMed  Google Scholar 

  37. Weimberg R (1961) Pentose oxidation by Pseudomonas fragi. J Biol Chem 236:629–635

    CAS  PubMed  Google Scholar 

  38. Radek A, Krumbach K, Gätgens J et al (2014) Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. J Biotechnol 192 Pt A:156–160. doi:10.1016/j.jbiotec.2014.09.026

    Article  PubMed  Google Scholar 

  39. Adham SA, Honrubia P, Díaz M et al (2001) Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 177(1):91–97

    Article  CAS  PubMed  Google Scholar 

  40. Hyeon JE, Jeon WJ, Whang SY et al (2011) Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 48(4-5):371–377. doi:10.1016/j.enzmictec.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  41. Tsuchidate T, Tateno T, Okai N et al (2011) Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum. Appl Microbiol Biotechnol 90(3):895–901. doi:10.1007/s00253-011-3116-7

    Article  CAS  PubMed  Google Scholar 

  42. Kim SJ, Hyeon JE, Jeon SD et al (2014) Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature. Enzyme Microb Technol 66:67–73. doi:10.1016/j.enzmictec.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  43. Doi H, Hoshino Y, Nakase K et al (2014) Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli. Appl Microbiol Biotechnol 98(2):629–639. doi:10.1007/s00253-013-5327-6

    Article  CAS  PubMed  Google Scholar 

  44. Arndt A, Auchter M, Ishige T et al (2008) Ethanol catabolism in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 15(4):222–233

    Article  CAS  PubMed  Google Scholar 

  45. Gerstmeir R, Wendisch VF, Schnicke S et al (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104(1-3):99–122

    Article  CAS  PubMed  Google Scholar 

  46. Hara Y, Kadotani N, Izui H et al (2012) The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol 93(1):331–341

    Article  PubMed  Google Scholar 

  47. Ajinomoto, Co., Inc. (2012) Ajinomoto Group Sustainability Report 2012. https://www.ajinomoto.com/en/activity/csr/pdf/2012/ajinomoto_csr12e.pdf

  48. Brautaset T, Jakobsen ØM, Josefsen KD et al (2007) Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50°C. Appl Microbiol Biotechnol 74(1):22–34

    Article  CAS  PubMed  Google Scholar 

  49. Tsujimoto N, Gunji Y, Ogawa-Miyata Y et al (2006) L-lysine biosynthetic pathway of Methylophilus methylotrophus and construction of an L-lysine producer. J Biotechnol 124(2):327–337

    Article  CAS  PubMed  Google Scholar 

  50. Gunji Y, Yasueda H (2006) Enhancement of l-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol 127(1):1–13

    Article  CAS  PubMed  Google Scholar 

  51. Motoyama H, Yano H, Terasaki Y et al (2001) Overproduction of L-lysine from methanol by Methylobacillus glycogens derivatives carrying a plasmid with a mutated dapA gene. Appl Environ Microbiol 67(7):3064–3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Muller JE, Heggeset TM, Wendisch VF et al (2015) Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 99(2):535–551. doi:10.1007/s00253-014-6224-3

    Article  CAS  PubMed  Google Scholar 

  53. Hanson RS, Dillingham R, Olson P et al (1996) Production of L-lysine and some other amino acids by mutants of Bacillus methanolicus. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer, The Netherlands, pp 227–236

    Chapter  Google Scholar 

  54. Brautaset T, Williams MD, Dillingham RD et al (2003) Role of the Bacillus methanolicus citrate synthase II gene citY in regulating the secretion of glutamate in L-lysine-secreting mutants. Appl Environ Microbiol 69(7):3986–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Witthoff S, Mühlroth A, Marienhagen J et al (2013) C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide. Appl Environ Microbiol 79(22):6974–6983. doi:10.1128/AEM.02705-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matsunaga T, Takeyama H, Sudo H et al (1991) Glutamate production from CO2 by marine cyanobacterium Synechococcus sp.—Using a novel biosolar reactor employing light-diffusing optical fibers. Appl Biochem Biotechnol 28–29:157–167

    Article  Google Scholar 

  57. Ryu J, Nam DH, Lee SH et al (2014) Biocatalytic photosynthesis with water as an electron donor. Chemistry 20(38):12020–12025. doi:10.1002/chem.201403301

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Usuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Usuda, Y., Hara, Y., Kojima, H. (2016). Toward Sustainable Amino Acid Production. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_36

Download citation

Publish with us

Policies and ethics