Skip to main content
Log in

Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Variable industrial strains have been applied in the fermentation of bulk amino acids. Strain discovery and evolution, process optimization are traditional approaches to improve the yield and efficiency of the bio-production process, hence to compete with chemical or enzymatic process in amino acids production. With the fast development of bioengineering and synthetic biology, the strains can be rationally engineered to achieve better performance and gain the capacity in the fermentation of broader range of amino acids, especially for value-added amino acids. This proposed review aims to summarize traditional and recent strains in the microbial production of amino acids, characterize their metabolic pathways and present potential objectives for rational evolution. In addition, this proposed review prospect the recent opportunities and challenges in the microbial production of value-added amino acids (rare amino acids, non-canonical amino acids, and unnatural amino acids).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrus, P., S. Lecoutre, L. Dollet, C. Wiel, A. Sulen, H. Gao, B. Tavira, J. Laurencikiene, O. Rooyackers, A. Checa, I. Douagi, C. E. Wheelock, P. Arner, M. McCarthy, M. O. Bergo, L. Edgar, R. P. Choudhury, M. Aouadi, A. Krook, and M. Rydén (2020) Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab. 31: 375–390.

    Article  CAS  PubMed  Google Scholar 

  2. Bercovici, D. and M. F. Fuller (1995) Industrial amino acids in nonruminant animal nutrition. pp. 93–113. In: R. J. Wallace and A. Chesson (eds.). Biotechnology in Animal Feeds and Animal Feeding. VCH Verlagsgesellschaft mbH, Weinheim, Germany.

    Chapter  Google Scholar 

  3. Atkins, J. F. and R. Gesteland (2002) The 22nd amino acid. Science. 296: 1409–1410.

    Article  CAS  PubMed  Google Scholar 

  4. Leuchtenberger, W., K. Huthmacher, and K. Drauz (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl. Microbiol. Biotechnol. 69: 1–8.

    Article  CAS  PubMed  Google Scholar 

  5. Zou, H., L. Li, T. Zhang, M. Shi, N. Zhang, J. Huang, and M. Xian (2018) Biosynthesis and biotechnological application of non-canonical amino acids: Complex and unclear. Biotechnol. Adv. 36: 1917–1927.

    Article  CAS  PubMed  Google Scholar 

  6. Li, H., W. Hua, Z. Wang, A. Liu, J. Jiang, and Y. Luo (2020) Theoretical spectroscopic studies on chemical and electronic structures of selenocysteine and pyrrolysine. J. Phys. Chem. A. 124: 2215–2224.

    Article  CAS  PubMed  Google Scholar 

  7. Murciano-Calles, J., A. R. Buller, and F. H. Arnold (2017) Directed evolution of an allosteric tryptophan synthase to create a platform for synthesis of noncanonical amino acids. pp. 1–16. In: M. Alcalde (ed.). Directed Enzyme Evolution: Advances and Applications. Springer, Cham, Switzerland.

    Google Scholar 

  8. Genilloud, O. (2017) Actinomycetes: still a source of novel antibiotics. Nat. Prod. Rep. 34: 1203–1232.

    Article  CAS  PubMed  Google Scholar 

  9. Gracia-Vitoria, J., I. Osante, and C. Cativiela (2017) Stereoselective synthesis of modified cysteines. Tetrahedron Asymmetry. 28: 215–245.

    Article  CAS  Google Scholar 

  10. Ramalingam, K., P. Nanjappan, D. M. Kalvin, and R. W. Woodard (1988) A practical large scale chemical synthesis of chiral glycines. Tetrahedron. 44: 5597–5604.

    Article  CAS  Google Scholar 

  11. Hashimoto, S. I. (2017) Discovery and history of amino acid fermentation. Adv. Biochem. Eng. Biotechnol. 159: 15–34.

    PubMed  Google Scholar 

  12. Patnaik, R. (2008) Engineering complex phenotypes in industrial strains. Biotechnol. Prog. 24: 38–47.

    Article  CAS  PubMed  Google Scholar 

  13. Dong, X., P. J. Quinn, and X. Wang (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol. Adv. 29: 11–23.

    Article  CAS  PubMed  Google Scholar 

  14. Qin, J., Y. J. Zhou, A. Krivoruchko, M. Huang, L. Liu, S. Khoomrung, V. Siewers, B. Jiang, and J. Nielsen (2015) Modular pathway rewiring of Saccharomyces cerevisiae enables highlevel production of L-ornithine. Nat. Commun. 6: 8224.

    Article  PubMed  Google Scholar 

  15. El-Hersh, M. S., W. I. A. Saber, H. A. EI-Fadaly, and M. K. Mahmoud (2016) Lysine and glutamic acids as the end products of multi-response of optimized fermented medium by Mucor mucedo KP736529. Pak. J. Biol. Sci. 19: 279–288.

    Article  CAS  PubMed  Google Scholar 

  16. Ikeda, M. (2003) Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1–35.

    CAS  PubMed  Google Scholar 

  17. Lee, J. Y., Y. A. Na, E. Kim, H. S. Lee, and P. Kim (2016) The actinobacterium Corynebacterium glutamicum, an industrial workhorse. J. Microbiol. Biotechnol. 26: 807–822.

    Article  PubMed  Google Scholar 

  18. Engels, V. and V. F. Wendisch (2007) The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 189: 2955–2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krause, F. S., A. Henrich, B. Blombach, R. Krȁmer, B. J. Eikmanns, and G. M. Seibold (2010) Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Appl. Environ. Microbiol. 76: 370–374.

    Article  CAS  PubMed  Google Scholar 

  20. Zahoor, A., S. N. Lindner, and V. F. Wendisch (2012) Metabolic engineering of Corynebacterium Glutamicum aimed at alternative carbon sources and new products. Comput. Struct. Biotechnol. J. 3: e201210004.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kalinowski, J., B. Bathe, D. Bartels, N. Bischoff, M. Bott, A. Burkovski, N. Dusch, L. Eggeling, B. J. Eikmanns, L. Gaigalat, A. Goesmann, M. Hartmann, K. Huthmacher, R. Krȁmer, B. Linke, A. C. McHardy, F. Meyer, B. Möckel, W. Pfefferle, A. Pűhler, D. A. Rey, C. Rűckert, O. Rupp, H. Sahm, V. F. Wendisch, I. Wiegrȁbe, and A. Tauch (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5–25.

    Article  CAS  PubMed  Google Scholar 

  22. Becker, J. and C. Wittmann (2012) Systems and synthetic metabolic engineering for amino acid production-the heartbeat of industrial strain development. Curr. Opin. Biotechnol. 23: 718–726.

    Article  CAS  PubMed  Google Scholar 

  23. Wendisch, V. F. (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J. Biotechnol. 104: 273–285.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, L. Y., Y. Y. Zhang, Z. Li, and J. Z. Liu (2013) Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J. Ind. Microbiol. Biotechnol. 40: 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  25. Hwang, G. H. and J. Y. Cho (2014) Enhancement of L-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol. 41: 573–578.

    Article  CAS  PubMed  Google Scholar 

  26. Witthoff, S., J. Marienhagen, and M. Bott (2014) Methanol-a potential carbon source for Corynebacterium glutamicum. N. Biotechnol. 31: S30.

    Article  Google Scholar 

  27. Irshad, S., A. S. Hashmi, M. M. Javed, M. E. Babar, A. R. Awan, and A. A. Anjum (2015) Optimization of physico-chemical parameters for hyperproduction of lysine by mutated strain of Brevibacterium flavum. J. Anim. Plant Sci. 25: 784–791.

    CAS  Google Scholar 

  28. Trujillo, M. E. and M. Goodfellow (2015) Brevibacterium. In: M. E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F. A. Rainey, and W. B. Whitman (eds.). Bergey’s Manual of Systematics of Archaea and Bacteria.https://doi.org/10.1002/9781118960608.gbm00062.

  29. Peng, Z., J. Fang, J. Li, L. Liu, G. Du, J. Chen, X. Wang, J. Ning, and L. Cai (2010) Combined dissolved oxygen and pH control strategy to improve the fermentative production of L-isoleucine by Brevibacterium lactofermentum. Bioprocess Biosyst. Eng. 33: 339–345.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, J., X. Zhang, L. Zhang, Y. Zhao, C. Niu, Z. Yang, and S. Li (2014) Potential probiotic characterization of Lactobacillus plantarum strains isolated from Inner Mongolia “Hurood” cheese. J. Microbiol. Biotechnol. 24: 225–235.

    Article  CAS  PubMed  Google Scholar 

  31. Ren, D., C. Li, Y. Qin, R. Yin, S. Du, F. Ye, C. Liu, H. Liu, M. Wang, Y. Li, Y. Sun, X. Li, M. Tian, and N. Jin (2014) In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe. 30: 1–10.

    Article  CAS  PubMed  Google Scholar 

  32. Adebo, O. A., P. B. Njobeh, and E. Kayitesi (2018) Fermentation by Lactobacillus fermentum strains (singly and in combination) enhances the properties of ting from two whole grain sorghum types. J. Cereal Sci. 82: 49–56.

    Article  CAS  Google Scholar 

  33. Cahyanto, M. N., H. Kawasaki, M. Nagashio, K. Fujiyama, and T. Seki (2007) Construction of Lactobacillus plantarum strain with enhanced L-lysine yield. J. Appl. Microbiol. 102: 674–679.

    Article  CAS  PubMed  Google Scholar 

  34. Mutaguchi, Y., K. Kasuga, and I. Kojima (2018) Production of d-branched-chain amino acids by lactic acid bacteria carrying homologs to isoleucine 2-epimerase of Lactobacillus buchneri. Front. Microbiol. 9: 1540.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Veeravalli, K., T. Schindler, E. Dong, M. Yamada, R. Hamilton, and M. W. Laird (2018) Strain engineering to reduce acetate accumulation during microaerobic growth conditions in Escherichia coli. Biotechnol. Prog. 34: 303–314.

    Article  CAS  PubMed  Google Scholar 

  36. Rosano, G. L. and E. A. Ceccarelli (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5: 172.

    Article  PubMed  PubMed Central  Google Scholar 

  37. D’Este, M., M. Alvarado-Morales, and I. Angelidaki (2018) Amino acids production focusing on fermentation technologies-A review. Biotechnol. Adv. 36: 14–25.

    Article  PubMed  Google Scholar 

  38. Ammar, E. M., X. Y. Wang, and C. V. Rao (2018) Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Sci. Rep. 8: 609.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xia, T., M. A. Eiteman, and E. Altman (2012) Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb. Cell Fact. 11: 77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yao, R., D. Xiong, H. Hu, M. Wakayama, W. Yu, X. Zhang, and K. Shimizu (2016) Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and 13C metabolic flux analysis. Biotechnol. Biofuels. 9: 175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gleizer, S., R. Ben-Nissan, Y. M. Bar-On, N. Antonovsky, E. Noor, Y. Zohar, G. Jona, E. Krieger, M. Shamshoum, A. Bar-Even, and R. Milo (2019) Conversion of Escherichia coli to generate all biomass carbon from CO. Cell. 179: 1255–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayashi, M. and K. Tabata (2013) Metabolic engineering for L-glutamine overproduction by using DNA gyrase mutations in Escherichia coli. Appl. Environ. Microbiol. 79: 3033–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, J., M. Han, X. Ren, and W. Zhang (2016) Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of L-lysine in Escherichia coli. Biochem. Eng. J. 114: 79–86.

    Article  CAS  Google Scholar 

  44. Zhang, X., K. Jantama, J. C. Moore, K. T. Shanmugam, and L. O. Ingram (2007) Production of L-alanine by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77: 355–366.

    Article  CAS  PubMed  Google Scholar 

  45. Derbikov, D. D., A. D. Novikov, T. A. Gubanova, M. G. Tarutina, I. T. Gvilava, D. M. Bubnov, and A. S. Yanenko (2017) Aspartic acid synthesis by Escherichia coli strains with deleted fumarase genes as biocatalysts. Appl. Biochem. Microbiol. 53: 859–866.

    Article  CAS  Google Scholar 

  46. Chen, Y., X. Y. Chen, H. T. Du, X. Zhang, Y. M. Ma, J. C. Chen, J. W. Ye, X. R. Jiang, and G. Q. Chen (2019) Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV). Metab. Eng. 54: 69–82.

    Article  CAS  PubMed  Google Scholar 

  47. Yu, L. P., X. Yan, X. Zhang, X. B. Chen, Q. Wu, X. R. Jiang, and G. Q. Chen (2020) Biosynthesis of functional polyhydroxy-alkanoates by engineered Halomonas bluephagenesis. Metab. Eng. 59: 119–130.

    Article  CAS  PubMed  Google Scholar 

  48. Du, H., Y. Zhao, F. Wu, P. Ouyang, J. Chen, X. Jiang, J. Ye, and G. Q. Chen (2020) Engineering Halomonas bluephagenesis for L-threonine production. Metab. Eng. 60: 119–127.

    Article  CAS  PubMed  Google Scholar 

  49. Gallone, B., S. Mertens, J. L. Gordon, S. Maere, K. J. Verstrepen, and J. Steensels (2018) Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Curr. Opin. Biotechnol. 49: 148–155.

    Article  CAS  PubMed  Google Scholar 

  50. Gibson, B., J. M. A. Geertman, C. T. Hittinger, K. Krogerus, D. Libkind, E. J. Louis, F. Magalhães, and J. P. Sampaio (2017) New yeasts-new brews: modern approaches to brewing yeast design and development. FEMS Yeast Res. 17: fox038.

    Article  Google Scholar 

  51. Chen, D., J. Y. Chia, and S. Q. Liu (2014) Impact of addition of aromatic amino acids on non-volatile and volatile compounds in lychee wine fermented with Saccharomyces cerevisiae MERIT.Ferm. Int. J. Food Microbiol. 170: 12–20.

    Article  CAS  PubMed  Google Scholar 

  52. Cordente, A. G., S. Schmidt, G. Beltran, M. J. Torija, and C. D. Curtin (2019) Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Appl. Microbiol. Biotechnol. 103: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  53. Chambers, P. J., A. R. Borneman, C. Varela, A. G. Cordente, J. R. Bellon, T. M. T. Tran, P. A. Henschke, and C. D. Curtin (2015) Ongoing domestication of wine yeast: past, present and future. Aust. J. Grape Wine Res. 21: 642–650.

    Article  Google Scholar 

  54. Gonçalves, M., A. Pontes, P. Almeida, R. Barbosa, M. Serra, D. Libkind, M. Hutzler, P. Gonçalves, and J. P. Sampaio (2016) Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr. Biol. 26: 2750–2761.

    Article  PubMed  Google Scholar 

  55. Bell, P. J., V. J. Higgins, and P. V. Attfield (2001) Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Lett. Appl. Microbiol. 32: 224–229.

    Article  CAS  PubMed  Google Scholar 

  56. Park, H. S., S. C. Jun, K. H. Han, S. B. Hongjj, and J. H. Yu (2017) Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv. Appl. Microbiol. 100: 161–202.

    Article  CAS  PubMed  Google Scholar 

  57. Fu, Y., X. Sun, H. Zhu, R. Jiang, X. Luo, and L. Yin (2018) An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae. World J. Microbiol. Biotechnol. 34: 74.

    Article  PubMed  Google Scholar 

  58. Odoni, D. I., J. A. Tamayo-Ramos, J. Sloothaak, R. G. A. van Heck, V. A. P. M. dos Santos, L. H. de Graaff, M. Suarez-Diez, and P. J. Schaap (2017) Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. Peer. J. 5: e3133.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Silva, D., K. Tokuioshi, E. Da Silva Martins, R. Da Silva, and E. Gomes (2005) Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem. 40: 2885–2889.

    Article  CAS  Google Scholar 

  60. De Morais Júnior, W. G., E. S. Kamimura, E. J. Ribeiro, B. C. Pessela, V. L. Cardosoa, and M. M. de Resende (2016) Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by submerged fermentation. Protein Expr. Purif. 123: 26–34.

    Article  Google Scholar 

  61. Eliskases-Lechner, F., M. Guéguen, and J. M. Panoff (2011) Yeasts and Molds. Geotrichum candidum. pp. 765–771. In: J. W. Fuquay (ed.). Encyclopedia of Dairy Sciences (Second Edition). Academic Press, Cambridge, MA, USA.

    Chapter  Google Scholar 

  62. Ali, S., I. U. Haq, and M. A. Qadeer (2002) Novel technique for microbial production of 3,4-dihydroxy phenyl L-alanine by a mutant strain of Aspergillus oryzae. Electron. J. Biotechnol. 5: 118–124.

    Article  Google Scholar 

  63. Xu, Y., Y. Li, L. Zhang, Z. Ding, Z. Gu, and G. Shi (2019) Unraveling the specific regulation of the shikimate pathway for tyrosine accumulation in Bacillus licheniformis. J. Ind. Microbiol. Biotechnol. 46: 1047–1059.

    Article  CAS  PubMed  Google Scholar 

  64. Wu, J., Y. Liu, S. Zhao, J. Sun, Z. Jin, and D. Zhang (2019) Application of dynamic regulation to increase L-phenylalanine production in Escherichia coli. J. Microbiol. Biotechnol. 29: 923–932.

    Article  CAS  PubMed  Google Scholar 

  65. Bongaerts, J., M. Krämer, U. Müller, L. Raeven, and M. Wubbolts (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compound. Metab. Eng. 3: 289–300.

    Article  CAS  PubMed  Google Scholar 

  66. Juminaga, D., E. E. K. Baidoo, A. M. Redding-Johanson, T. S. Batth, H. Burd, A. Mukhopadhyay, C. J. Petzold, and J. D. Keasling (2012) Modular engineering of L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 78: 89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ray, J. M., C. Yanofsky, and R. Bauerle (1988) Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J. Bacteriol. 170: 5500–5506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, L., M. Chen, C. Ma, and A. P. Zeng (2018) Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metab. Eng. 47: 434–444.

    Article  CAS  PubMed  Google Scholar 

  69. Lin, S., X. Meng, J. Jiang, D. Pang, G. Jones, H. OuYang, and L. Ren (2012) Site-directed mutagenesis and over expression of aroG gene of Escherichia coli K-12. Int. J. Biol. Macromol. 51: 915–919.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, C., Z. Kang, J. Zhang, G. Du, J. Chen, and X. Yu (2014) Construction and application of novel feedback-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis. FEMS Microbiol. Lett. 353: 11–18.

    Article  CAS  PubMed  Google Scholar 

  71. Ikeda, M. (2005) Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615–626.

    Article  PubMed  Google Scholar 

  72. Ikeda, M. and R. Katsumata (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl. Environ. Microbiol. 58: 781–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Katsumata, R. and M. Ikeda (1993) Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Nat Biotechnol. 11: 921–925.

    Article  CAS  Google Scholar 

  74. Sousa, S., M. M. Mclaughlin, S. A. Pereira, S. VanHorn, R. Knowlton, J. R. Brown, R. O. Nicholas, and G. P. Livi (2002) The ARO4 gene of Candida albicans encodes a tyrosine-sensitive DAHP synthase: Evolution, functional conservation and phenotype of Aro3p-, Aro4p-deficient mutants. Microbiology. 148: 1291–1303.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, J., Q. Wan, Y. Yuan, J. Zhu, and S. J. Danishefsky (2008) Native chemical ligation at valine: A contribution to peptide and glycopeptide synthesis. Angew. Chem. Int. Ed. 47: 8521–8524.

    Article  CAS  Google Scholar 

  76. Alam, N. and H. Ashraf (2012) Evaluation of the efficacy of L-isoleucine supplemented food and vitamin D in the treatment of acute diarrhea in children. Arch. Dis. Child. 97: A12.

    Article  Google Scholar 

  77. Isanejad, M., A. Z. LaCroix, C. A. Thomson, L. Tinker, J. C. Larson, Q. Qi, L. Qi, R. M. Cooper-DeHof, L. S. Phillips, R. L. Prentice, and J. M. Beasley (2017) Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br. J. Nutr. 117: 1523–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gorissen, S. H. M. and S. M. Phillips (2019) Branched-chain amino acids (leucine, isoleucine, and valine) and skeletal muscle. pp. 283–298. In: S. Walrand (ed.). Nutrition and Skeletal Muscle. Academic Press, Cambridge, MA, USA. 79.

    Chapter  Google Scholar 

  79. Holeček, M. (2017) Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation. Nutrition. 41: 80–85.

    Article  PubMed  Google Scholar 

  80. Franco, T. M. A. and J. S. Blanchard (2017) Bacterial branched-chain amino acid biosynthesis: Structures, mechanisms, and drugability. Biochemistry. 56: 5849–5865.

    Article  Google Scholar 

  81. Park, J. H. and S. Y. Lee (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl. Microbiol. Biotechnol. 85: 491–506.

    Article  CAS  PubMed  Google Scholar 

  82. Park, J. H., J. E. Oh, K. H. Lee, J. Y. Kim, and S. Y. Lee (2012) Rational design of Escherichia coli for L-isoleucine production. ACS Synth. Biol. 1: 532–540.

    Article  CAS  PubMed  Google Scholar 

  83. Oldiges, M., B. J. Eikmanns, and B. Blombach (2014) Application of metabolic engineering for the biotechnological production of L-valine. Appl. Microbiol. Biotechnol. 98: 5859–5870.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, X., H. Zhang, and P. J. Quinn (2018) Production of L-valine from metabolically engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 102: 4319–4330.

    Article  CAS  PubMed  Google Scholar 

  85. Wang, X. (2019) Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 103: 2101–2111.

    Article  CAS  PubMed  Google Scholar 

  86. Elišáková, V., M. Pátek, J. Holátko, J. Nešvera, D. Leyval, J. L. Goergen, and S. Delaunay (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 71: 207–213.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yin, L., X. Hu, D. Xu, J. Ning, J. Chen, and X. Wang (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab. Eng. 14: 542–550.

    Article  CAS  PubMed  Google Scholar 

  88. Vogt, M. (2014) Metabolic Engineering of Corynebacterium glutamicum for Production of L-leucine and 2-ketoisocaproate. Forschungszentrum Julich, Julich, Germany.

    Google Scholar 

  89. Cheng, K. and C. Z. Zhang (2014) Screening, mutagenesis of Brevibacterium flavum for the enhancement of L-valine production. pp. 285–289. In: T. C. Zhang, P. Ouyang, S. Kaplan, and B. Skarnes (eds.). Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering. Springer, Berlin, Germany.

    Chapter  Google Scholar 

  90. Hou, X., X. Chen, Y. Zhang, H. Qian, and W. Zhang (2012) L— valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids. 43: 2301–23

    Article  CAS  PubMed  Google Scholar 

  91. Butterworth, R. F. (2020) Beneficial effects of L-ornithine L-aspartate for prevention of overt hepatic encephalopathy in patients with cirrhosis: a systematic review with meta-analysis. Metab. Brain Dis. 35: 75–81.

    Article  CAS  PubMed  Google Scholar 

  92. He, X., K. Chen, Y. Li, Z. Wang, H. Zhang, J. Qian, and P. Ouyang (2015) Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess Biosyst. Eng. 38: 1615–1622.

    Article  CAS  PubMed  Google Scholar 

  93. Jankowski, J., M. Kubińska, and Z. Zduńczyk (2014) Nutritional and immunomodulatory function of methionine in poultry dietsa review. Ann. Anim. Sci. 14: 17–32.

    Article  CAS  Google Scholar 

  94. Liu, Y., Q. Li, P. Zheng, Z. Zhang, Y. Liu, C. Sun, G. Cao, W. Zhou, X. Wang, D. Zhang, T. Zhang, J. Sun, and Y. Ma (2015) Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microb. Cell Fact. 14: 121.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Macdonald, J. C. (1958) Synthesis of aspartic acid by Lactobacillus arabinosus. Can. J. Microbiol. 4: 335–343.

    Article  CAS  PubMed  Google Scholar 

  96. Shiio, I., H. Ozaki, and K. Ujigawa-Takeda (1982) Production of aspartic acid and lysine by citrate synthase mutants of Brevibacterium flavum. Agric. Biol. Chem. 46: 101–107.

    CAS  Google Scholar 

  97. Weiner, B., G. J. Poelarends, D. B. Janssen, and B. L. Feringa (2008) Biocatalytic enantioselective synthesis of N-substituted aspartic acids by aspartate ammonia lyase. Chemistry. 14: 10094–10100.

    Article  CAS  PubMed  Google Scholar 

  98. Son, H. F. and K. J. Kim (2016) Structural insights into a novel class of aspartate aminotransferase from Corynebacterium glutamicum. PLoS One. 11: e0158402.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hammes, G. G., S. J. Benkovic, and S. Hammes-Schiffer (2011) Flexibility, diversity, and cooperativity: Pillars of enzyme catalysis. Biochemistry. 50: 10422–10430.

    Article  CAS  PubMed  Google Scholar 

  100. Larsen, T. M., S. K. Boehlein, S. M. Schuster, N. G. Richards, J. B. Thoden, H. M. Holden, and I. Rayment (1999) Three-dimensional structure of Escherichia coli asparagine synthetase B: A short journey from substrate to product. Biochemistry. 38: 16146–16157.

    Article  CAS  PubMed  Google Scholar 

  101. Ma, C. W., Z. L. Xiu, and A. P. Zeng (2015) Exploring signal transduction in heteromultimeric protein based on energy dissipation model. J. Biomol. Struct. Dyn. 33: 134–146.

    Article  CAS  PubMed  Google Scholar 

  102. Ikeda, M., J. Ohnishi, M. Hayashi, and S. Mitsuhashi (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J. Ind. Microbiol. Biotechnol. 33: 610–615.

    Article  CAS  PubMed  Google Scholar 

  103. Bhattacharjee, J. K. (1985) a-aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit. Rev. Microbiol. 12: 131–151.

    Article  CAS  PubMed  Google Scholar 

  104. Ehmann, D. E., A. M. Gehring, and C. T. Walsh (1999) Lysine biosynthesis in Saccharomyces cerevisiae: Mechanism of α-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. Biochemistry. 38: 6171–6177.

    Article  CAS  PubMed  Google Scholar 

  105. Liu, M., J. Lou, J. Gu, X. M. Lyu, F. Q. Wang, and D. Z. Wei (2020) Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways. J. Biotechnol. 314–315: 1–7.

    Article  PubMed  Google Scholar 

  106. Shim, J., Y. Shin, I. Lee, and S. Y. Kim (2017) L-methionine production. Adv. Biochem. Eng. Biotechnol. 159: 153–177.

    CAS  PubMed  Google Scholar 

  107. Rückert, C., A. Pühler, and J. Kalinowski (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J. Biotechnol. 104: 213–228.

    Article  PubMed  Google Scholar 

  108. Mondal, S., Y. B. Das, and S. P. Chatterjee (1996) Methionine production by microorganisms. Folia Microbiol. 41: 465–472.

    Article  CAS  Google Scholar 

  109. Park, S. D., J. Y. Lee, S. Y. Sim, Y. Kim, and H. S. Lee (2007) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng. 9: 327–336.

    Article  CAS  PubMed  Google Scholar 

  110. Hwang, B. J., H. J. Yeom, Y. Kim, and H. S. Lee (2002) Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J. Bacteriol. 184: 1277–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wei, L., N. Xu, Y. Wang, W. Zhou, G. Han, Y. Ma, and J. Liu (2018) Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 102: 4117–4130.

    Article  CAS  PubMed  Google Scholar 

  112. Farfán, M. J., E. Martín-Rendón, and I. L. Calderón (1996) Effect of gene amplification on threonine production by yeast. Biotechnol. Bioeng. 49: 667–674.

    Article  PubMed  Google Scholar 

  113. Sano, C. (2009) History of glutamate production. Am. J. Clin. Nutr. 90: 728S–732S.

    Article  CAS  PubMed  Google Scholar 

  114. Ahn, W. S. and M. R. Antoniewicz (2012) Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol. J. 7: 61–74.

    Article  CAS  PubMed  Google Scholar 

  115. Coëffier, M. and P. Déchelotte (2005) The role of glutamine in intensive care unit patients: Mechanisms of action and clinical outcome. Nutr. Rev. 63: 65–69.

    Article  PubMed  Google Scholar 

  116. Öhlund, J. and T. NȁSholm (2002) Low nitrogen losses with a new source of nitrogen for cultivation of conifer seedlings. Environ. Sci. Technol. 36: 4854–4859.

    Article  PubMed  Google Scholar 

  117. Yi, Y. L., H. Sheng, Z. Li, and Q. Ye (2014) Biosynthesis of trans-4-hydroxyproline by recombinant strains of Corynebacterium glutamicum and Escherichia coli. BMC Biotechnol. 14: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kimura, E. (2003) Metabolic engineering of glutamate production. Adv. Biochem. Eng. Biotechnol. 79: 37–57.

    CAS  PubMed  Google Scholar 

  119. Nadeem, S., B. Niaz, H. M. Muzammil, S. M. Rana, M. I. Rajoka, and A. R. Shakoori (2011) Optimising carbon and nitrogen sources for L-Glutamic acid production by Brevibacterium strain NIAB SS-67. Pakistan J. Zool. 43: 285–290.

    CAS  Google Scholar 

  120. Asakura, Y., E. Kimura, Y. Usuda, Y. Kawahara, K. Matsui, T. Osumi, and T. Nakamatsu (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 1308–1319.

    Article  CAS  PubMed  Google Scholar 

  121. Kim, J., T. Hirasawa, M. Saito, C. Furusawa, and H. Shimizu (2011) Investigation of phosphorylation status of OdhI protein during penicillin- and Tween 40-triggered glutamate overproduction by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 91: 143–151.

    Article  CAS  PubMed  Google Scholar 

  122. Nishio, Y., S. Ogishima, M. Ichikawa, Y. Yamada, Y. Usuda, T. Masuda, and H. Tanaka (2013) Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Syst. Biol. 7: 92.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fisher, S. H. (1992) Glutamine synthesis in Streptomyces-a review. Gene. 115: 13–17.

    Article  CAS  PubMed  Google Scholar 

  124. Behenský, P., V. Stenzl, F. Adámek, and V. Bẽhal (1999) Conversion of glutamate to glutamine by permeabilized Corynebacterium glutamicum. Folia Microbiol. 44: 487–490.

    Article  Google Scholar 

  125. Shibasaki, T., S. Hashimoto, H. Mori, and A. Ozaki (2000) Construction of a novel hydroxyproline-producing recombinant Escherichia coli by introducing a proline 4-hydroxylase gene. J. Biosci. Bioeng. 90: 522–525.

    Article  CAS  PubMed  Google Scholar 

  126. Csonka, L. N. and T. Leisinger (2007) Biosynthesis of proline. EcoSal Plus. 2. https://doi.org/10.1128/ecosalplus.3.6.1.4.

  127. Tomenchok, D. M. and M. C. Brandriss (1987) Gene-enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae. J. Bacteriol. 169: 5364–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ginesy, M., J. Belotserkovsky, J. Enman, L. Isaksson, and U. Rova (2015) Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microb. Cell Fact. 14: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ikeda, M., S. Mitsuhashi, K. Tanaka, and M. Hayashi (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl. Environ. Microbiol. 75: 1635–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Utagawa, T. (2004) Production of arginine by fermentation. J. Nutr. 134: 2854S–2857S.

    Article  CAS  PubMed  Google Scholar 

  131. Cheng, Y., Y. Zhou, L. Yang, C. Zhang, Q. Xu, X. Xie, and N. Chen (2013) Modification of histidine biosynthesis pathway genes and the impact on production of L-histidine in Corynebacterium glutamicum. Biotechnol. Lett. 35: 735–741.

    Article  CAS  PubMed  Google Scholar 

  132. Peters-Wendisch, P., M. Stolz, H. Etterich, N. Kennerknecht, H. Sahm, and L. Eggeling (2005) Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl. Environ. Microbiol. 71: 7139–7144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dubey, S., R. Bist, and S. Misra (2018) Effect of EMS on antioxidant enzyme activity and oxidative stress of Triticum aestivum L. Var Hd-2894. Int. J. Curr. Pharm. Res. 10: 33–37.

    Article  CAS  Google Scholar 

  134. Backus, K. M. (2019) Applications of reactive cysteine profiling. Curr. Top. Microbiol. Immunol. 420: 375–417.

    CAS  PubMed  Google Scholar 

  135. Lee, M., G. M. Smith, M. A. Eiteman, and E. Altman (2004) Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene. Appl. Microbiol. Biotechnol. 65: 56–60.

    Article  CAS  PubMed  Google Scholar 

  136. Doroshenko, V. G., A. O. Lobanov, and E. A. Fedorina (2013) The directed modification of Escherichia coli MG1655 to obtain histidine-producing mutants. Appl. Biochem. Microbiol. 49: 130–135.

    Article  CAS  Google Scholar 

  137. Kulis-Horn, R. K., M. Persicke, and J. Kalinowski (2014) Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb. Biotechnol. 7: 5–25.

    Article  CAS  PubMed  Google Scholar 

  138. Chim-Anage, P., S. Shioya, and K. I. Suga (1991) Maximum histidine production by fed-batch culture of Brevibacterium flavum. J. Ferment. Bioeng. 71: 186–190.

    Article  CAS  Google Scholar 

  139. Li, Y., G. K. Chen, X. W. Tong, H. T. Zhang, X. G. Liu, Y. H. Liu, and F. P. Lu (2012) Construction of Escherichia coli strains producing L-serine from glucose. Biotechnol. Lett. 34: 1525–1530.

    Article  CAS  PubMed  Google Scholar 

  140. Stolz, M., P. Peters-Wendisch, H. Etterich, T. Gerharz, R. Faurie, H. Sahm, H. Fersterra, and L. Eggeling (2007) Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 750–755.

    Article  CAS  PubMed  Google Scholar 

  141. Lai, S., Y. Zhang, S. Liu, Y. Liang, X. Shang, X. Chai, and T. Wen (2012) Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production. Sci. China Life Sci. 55: 283–290.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, X., D. Zhang, J. Zhu, W. Liu, G. Xu, X. Zhang, J. Shi, and Z. Xu (2019) High-yield production of L-serine from glycerol by engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 46: 221–230.

    Article  CAS  PubMed  Google Scholar 

  143. Kondoh, M. and T. Hirasawa (2019) L-cysteine production by metabolically engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 103: 2609–2619.

    Article  CAS  PubMed  Google Scholar 

  144. Xu, Q., S. Li, H. Huang, and J. Wen (2012) Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol. Adv. 30: 1685–1696.

    Article  CAS  PubMed  Google Scholar 

  145. Li, Y., H. Cong, B. Liu, J. Song, X. Sun, J. Zhang, and Q. Yang (2016) Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie Van Leeuwenhoek. 109: 1185–1197.

    Article  CAS  PubMed  Google Scholar 

  146. Deshpande, A., J. Vue, and J. Morgan (2020) Combining random mutagenesis and metabolic engineering for enhanced tryptophan production in Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 86: e02816–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Forloni, M., A. Y. Liu, and N. Wajapeyee (2018) Random mutagenesis using error-prone DNA polymerases. Cold Spring Harb Protoc. doi: https://doi.org/10.1101/pdb.prot097741.

  148. Wang, X., L. Rong, M. Wang, Y. Pan, Y. Zhao, and F. Tao (2017) Improving the activity of endoglucanase I (EGI) from Saccharomyces cerevisiae by DNA shuffling. RSC Adv. 7: 46246–46256.

    Article  CAS  Google Scholar 

  149. Dumas, L., F. Zito, P. Auroy, X. Johnson, G. Peltier, and J. Alric (2018) Structure-function analysis of chloroplast proteins via random mutagenesis using error-prone PCR. Plant Physiol. 177: 465–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xu, L., F. Han, Z. Dong, and Z. Wei (2020) Engineering improves enzymatic synthesis of L-tryptophan by tryptophan synthase from Escherichia coli. Microorganisms. 8: 519.

    Article  CAS  PubMed Central  Google Scholar 

  151. Zuo, Z. Y., Z. L. Zheng, Z. G. Liu, Q. M. Yi, and G. L. Zou (2007) Cloning, DNA shuffling and expression of serine hydroxymethyltransferase gene from Escherichia coli strain AB90054. Enzyme Microb. Technol. 40: 569–577.

    Article  CAS  Google Scholar 

  152. Cherian, S., S. B. Ryu, and K. Cornish (2019) Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol. J. 17: 2041–2061.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sathesh-Prabu, C. and S. K. Lee (2018) Genome editing tools for Escherichia coli and their application in metabolic engineering and synthetic biology. pp. 307–319. In: H. N. Chang (ed.). Emerging Areas in Bioengineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Chapter  Google Scholar 

  154. Sun, Y., T. J. McCorvie, L. A. Yates, and X. Zhang (2020) Structural basis of homologous recombination. Cell. Mol. Life Sci. 77: 3–18.

    Article  CAS  PubMed  Google Scholar 

  155. Mizoguchi, H., K. Tanaka-masuda, and H. Mori (2007) A simple method for multiple modification of the Escherichia coli K-12 chromosome. Biosci. Biotechnol. Biochem. 71: 2905–2911.

    Article  CAS  PubMed  Google Scholar 

  156. Tiricz, H., B. Nagy, G. Ferenc, K. Török, I. Nagy, D. Dudits, and F. Ayaydin (2018) Relaxed chromatin induced by histone deacetylase inhibitors improves the oligonucleotide-directed gene editing in plant cells. J. Plant Res. 131: 179–189.

    Article  CAS  PubMed  Google Scholar 

  157. Xu, J., M. Han, J. Zhang, Y. Guo, H. Qian, and W. Zhang (2013) Improvement of L-lysine production combines with minimization of by-products synthesis in Corynebacterium glutamicum. J. Chem. Technol. Biotechnol. 89: 1924–1933.

    Article  Google Scholar 

  158. Blombach, B., S. Hans, B. Bathe, and B. J. Eikmanns (2009) Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 419–427.

    Article  CAS  PubMed  Google Scholar 

  159. Hahm, J. Y., J. Y. Kang, J. W. Park, H. Jung, and S. B. Seo (2020) Methylated-UHRF1 and PARP1 interaction is critical for homologous recombination. BMB Rep. 53: 112–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sauer, N. J., J. Mozoruk, R. B. Miller, Z. J. Warburg, K. A. Walker, P. R. Beetham, C. R. Schöpke, and G. F. W. Gocal (2016) Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol. J. 14: 496–502.

    Article  CAS  PubMed  Google Scholar 

  161. Liu, H., C. Liu, Y. Zhao, X. Han, Z. Zhou, C. Wang, R. Li, and X. Li (2018) Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts. J. Integr. Agric. 17: 406–414.

    Article  CAS  Google Scholar 

  162. Zhao, Z. J., C. Zou, Y. X. Zhu, J. Dai, S. Chen, D. Wu, J. Wu, and J. Chen (2011) Development of L-tryptophan production strains by defined genetic modification in Escherichia coli. J. Ind. Microbiol. Biotechnol. 38: 1921–1929.

    Article  CAS  PubMed  Google Scholar 

  163. Araldi, R. P., C. Khalil, P. H. Grignet, M. R. Teixeira, T. C. de Melo, D. G. Módolo, L. G. V. Fernandes, J. Ruiz, and E. B. de Souza (2020) Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview. Gene. 745: 144636.

    Article  CAS  PubMed  Google Scholar 

  164. Li, X. T., C. Sou, and S. Jun (2017) Protocol for construction of a tunable CRISPR interference (tCRISPRi) strain for Escherichia coli. Bio Protocol. 7: e2574.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Deng, H., R. Gao, X. Liao, and Y. Cai (2017) CRISPR system in filamentous fungi: Current achievements and future directions. Gene. 627: 212–221.

    Article  CAS  PubMed  Google Scholar 

  166. Larson, M. H., L. A. Gilbert, X. Wang, W. A. Lim, J. S. Weissman, and L. S. Qi (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8:2180–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Schultenkämper, K., L. F. Brito, and V. F. Wendisch (2020) Impact of CRISPR interference on strain development in biotechnology. Biotechnol. Appl. Biochem. 67: 7–21.

    Article  PubMed  Google Scholar 

  168. Depardieu, F. and D. Bikard (2020) Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels. Methods. 172: 61–75.

    Article  CAS  PubMed  Google Scholar 

  169. Nishimasu, H., X. Shi, S. Ishiguro, L. Gao, S. Hirano, S. Okazaki, T. Noda, O. O. Abudayyeh, J. S. Gootenberg, H. Mori, S. Oura, B. Holmes, M. Tanaka, M. Seki, H. Hirano, H. Aburatani, R. Ishitani, M. Ikawa, N. Yachie, F. Zhang, and O. Nureki (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 361: 1259–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cleto, S., J. V. Jensen, V. F. Wendisch, and T. K. Lu (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth. Biol. 5: 375–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sebastian, J., K. Hegde, P. Kumar, T. Rouissi, and S. K. Brar (2019) Bioproduction of fumaric acid: an insight into microbial strain improvement strategies. Crit. Rev. Biotechnol. 39: 817–834.

    Article  CAS  PubMed  Google Scholar 

  172. Zhang, J., F. Yang, Y. Yang, Y. Jiang, and Y. X. Huo (2019) Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum. Microb. Cell Fact. 18: 60.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Nudler, E. and A. S. Mironov (2004) The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29: 11–17.

    Article  CAS  PubMed  Google Scholar 

  174. Serganov, A., L. Huang, and D. J. Patel (2008) Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature. 455: 1263–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Henkin, T. M. (2008) Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 22: 3383–3390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chen, H., M. Egger, X. Xu, L. Flemmich, O. Krasheninina, A. Sun, R. Micura, and A. Ren (2020) Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding. Nucleic Acids Res. 48: 12394–12406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Garst, A. D., E. B. Porter, and R. T. Batey (2012) Insights into the regulatory landscape of the lysine riboswitch. J. Mol. Biol. 423: 17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Breaker, R. R. (2011) Prospects for riboswitch discovery and analysis. Mol. Cell. 43: 867–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhou, L. B. and A. P. Zeng (2015) Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth. Biol. 4: 1335–1340.

    Article  CAS  PubMed  Google Scholar 

  180. Zhou, L. B. and A. P. Zeng (2015) Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth. Biol. 4: 729–734.

    Article  CAS  PubMed  Google Scholar 

  181. Teng, P., N. Ma, D. C. Cerrato, F. She, T. Odom, X. Wang, L. J. Ming, A. van der Vaart, L. Wojtas, H. Xu, and J. Cai (2017) Right-handed helical foldamers consisting of de novo D-AApeptides. J. Am. Chem. Soc. 139: 7363–7369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wiltschi, B., T. Cernava, A. Dennig, M. G. Casas, M. Galindo, S. Gruber, M. Haberbauer, P. Heidinger, E. H. Acero, R. Kratzer, C. Luley-Goedl, C. A. Müller, J. Pitzer, D. Ribitsch, M. Sauer, K. Schmölzer, W. Schnitzhofer, C. W. Sensen, J. Soh, K. Steiner, C. K. Winkler, M. Winkler, and T. Wriessnegger (2020) Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol. Adv. 40: 107520.

    Article  CAS  PubMed  Google Scholar 

  183. Krzycki, J. A. (2013) The path of lysine to pyrrolysine. Curr. Opin. Chem. Biol. 17: 619–625.

    Article  CAS  PubMed  Google Scholar 

  184. Wong, M. L., I. A. Guzei, and L. L. Kiessling (2012) An asymmetric synthesis of L-pyrrolysine. Org. Lett. 14: 1378–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mariotti, M., G. Salinas, T. Gabaldón, and V. N. Gladyshev (2019) Utilization of selenocysteine in early-branching fungal phyla. Nat. Microbiol. 4: 759–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Reddy, K. M. and G. Mugesh (2019) Application of dehydroalanine as a building block for the synthesis of selenocysteine-containing peptides. RSC Adv. 9: 34–43.

    Article  CAS  Google Scholar 

  187. Castañeda-Ovando, A., J. A. Segovia-Cruz, J. F. Flores-Aguilar, G. M. Rodríguez-Serrano, V. Salazar-Pereda, J. Ramírez-Godínez, E. Contreras-López, J. Jaimez-Ordaz, and L. G. González-Olivares (2019) Serine-enriched minimal medium enhances conversion of selenium into selenocysteine by Streptococcus thermophilus. J. Dairy Sci. 102: 6781–6789.

    Article  PubMed  Google Scholar 

  188. Shen, Y. P., F. X. Niu, Z. B. Yan, L. S. Fong, Y. B. Huang, and J. Z. Liu (2020) Recent advances in metabolically engineered microorganisms for the production of aromatic chemicals derived from aromatic amino acids. Front. Bioeng. Biotechnol. 8: 407.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Das, A., N. Tyagi, A. Verma, S. Akhtar, and K. J. Mukherjee (2018) Metabolic engineering of Escherichia coli W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-Dopa production from glycerol. Prep. Biochem. Biotechnol. 48: 671–682.

    Article  CAS  PubMed  Google Scholar 

  190. Morbach, S., R. Kelle, S. Winkels, H. Sahm, and L. Eggeling (1996) Engineering the homoserine dehydrogenase and threonine dehydratase control points to analyse flux towards L-isoleucine in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 45: 612–620.

    Article  CAS  Google Scholar 

  191. Katashkina, J. Y., M. G. Lunts, V. G. Doroshenko, S. A. Fomina, A. Y. Skorokhodova, L. V. Ivanovskaya, and S. V. Mashko (2009) Method for producing an L-amino acid using a bacterium with an optimized level of gene expression. US Patent 7,604,979 B2.

  192. Livshits, V. A., V. G. Doroshenko, N. V. Gorshkova, A. V. Belaryeva, L. V. Ivanovskaya, E. M. Khourges, V. Z. Akhverdian, M. M. Gusyatiner, and Y. I. Kozlov (2004) Mutant ilvH gene and method for producing L-valine. US Patent 6,737,255.

  193. Becker, J., O. Zelder, S. Häfner, H. Schröder, and C. Wittmann (2011) From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159–168.

    Article  CAS  PubMed  Google Scholar 

  194. Zhang, D., D. Guan, J. Liang, C. Guo, X. Xie, C. Zhang, Q. Xu, and N. Chen (2015) Reducing lactate secretion by ldhA deletion in L-glutamate-producing strain Corynebacterium glutamicum GDK-9. Braz. J. Microbiol. 45: 1477–1483.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Mundhada, H., K. Schneider, H. B. Christensen, and A. T. Nielsen (2016) Engineering of high yield production of L-serine in Escherichia coli. Biotechnol. Bioeng. 113: 807–816.

    Article  CAS  PubMed  Google Scholar 

  196. Nakamori, S., S. I. Kobayashi, C. Kobayashi, and H. Takagi (1998) Overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl. Environ. Microbiol. 64: 1607–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hitoshi, S., F. Chiharu, E. Takakazu, and W. Ichiro (1993) Process for preparing glycine from glycinonitrile. US Patent 5,238,827.

  198. Yamamoto, S., W. Gunji, H. Suzuki, H. Toda, M. Suda, T. Jojima, M. Inui, and H. Yukawa (2012) Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl. Environ. Microbiol. 78: 4447–4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Braga, A. L., L. A. Wessjohann, P. S. Taube, F. Z. Galetto, and F. M. de Andrade (2010) Straightforward method for the synthesis of selenocysteine and selenocystine derivatives from L-serine methyl ester. Synthesis. 18: 3131–3137.

    Article  Google Scholar 

  200. Gaston, M. A., L. Zhang, K. B. Green-Church, and J. A. Krzycki (2011) The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine. Nature. 471: 647–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported by Shandong Province Natural Science Foundation (ZR2015BM011), Technology Development Project of Shandong Province (2016GSF 121013), National Natural Science Foundation (21978311), Open Subject of Zibo Research Platform in Gene Editing and Cell Application (2019GECA011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Zou.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Ren, X., Liang, X. et al. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. Biotechnol Bioproc E 26, 708–727 (2021). https://doi.org/10.1007/s12257-020-0390-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0390-1

Keywords

Navigation