Skip to main content

Origin, Genetic Diversity, Conservation, and Traditional and Molecular Breeding Approaches in Sugarcane

  • Chapter
  • First Online:
Cash Crops

Abstract

Modern sugarcane cultivars are highly polyploid and have giant genomes (10 giga bases (Gb)) derived from interspecific hybridization between the cultivated species S. officinarum L. and the wild species S. spontaneum L. Genetic resources could be useful for developing new varieties, and therefore, plant breeding programs are assembling a germplasm collection to increase the number of possible novel gene combinations. The use of wild relatives in sugarcane breeding started at the beginning of introgression during the nobilization process, and it is still used in breeding programs primarily to search for varieties that are more tolerant to biotic and abiotic stresses. The success of a traditional sugarcane-breeding program relies on several factors, among which the appropriate parental selection must be made to maximize the chance of genetic enhancement. This choice will be determined by the short- and long-term goals, the availability of materials, flowering synchronism, breeding values, and the amount of data available from any parent or combination. In general, the process of developing a new cultivar is long and complex. Genetic resistance to diseases has been successfully achieved through traditional breeding, although this approach is challenging and takes a long time. Several studies have been conducted to unravel and understand the genetic basis of disease resistance and complex traits (e.g., sugar and fiber, among others) through QTL and association mapping. In recent decades, important advances have been made in understanding the sugarcane genome and the gene expression associated with agronomic traits. Furthermore, transgenic sugarcane has been produced in several countries, and there have been numerous initiatives to employ genome editing technology. New breeding technologies and strategies are required to boost genetic improvements significantly in future crop cultivars. Genomic selection has the potential to increase the rate of genetic gain significantly in sugarcane, primarily by (1) reducing the breeding cycle length, (2) increasing the prediction accuracy for clonal performance, and (3) increasing the accuracy of the breeding values for parent selection. This chapter describes the origin, genetic diversity, conservation, and traditional and molecular breeding approaches associated with sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801. https://doi.org/10.1007/s00122-004-1813-7

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2006) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar× Saccharum officinarum population. Theor Appl Genet 112(7):1306–1317

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117(7):1191–1203

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, McNeil MD, Hermann S et al (2014) A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers. BMC Genomics 15:152. https://doi.org/10.1186/1471-2164-15-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander AG (1973) Sugarcane physiology: a comprehensive study of the Saccharum source -to-sink system. Elsevier Scientific, The Netherlands, pp 4–66

    Google Scholar 

  • Aljanabi SM, Parmessur Y, Kross H, Dhayan S, Saumtally S, Ramdoyal K et al (2007) Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breed 19(1):1–14

    Article  Google Scholar 

  • Almeida LM (2010) Seleção de famílias de irmãos-completos de cana-de-acúcar e estimativa da diversidade genética via marcador de DNA (ISSR). Universidade Estadual do Norte Fluminense – UENF, Campos dos Goytacazes

    Google Scholar 

  • Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46(1):448–455

    Article  CAS  Google Scholar 

  • Amalraj RS, Selvaraj N, Veluswamy GK et al (2010) Sugarcane proteomics: establishment of a protein extraction method for 2-DE in stalk tissues and initiation of sugarcane proteome reference map. Electrophoresis 31(12):1959–1974. https://doi.org/10.1002/elps.200900779

    Article  CAS  PubMed  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A, Hernández L, Gustavo A, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3:247–255

    Article  Google Scholar 

  • Augustine SM (2017) CRISPR-Cas9 system as a genome editing tool in sugarcane. In: Mohan C (ed) Sugarcane biotechnology: challenges and prospects. Springer, Cham. https://doi.org/10.1007/978-3-319-58946-6_11

    Chapter  Google Scholar 

  • Balsalobre TWA, da Silva Pereira G, Margarido GRA, Gazaffi R, Barreto FZ, Anoni CO et al (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 18(1):72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee N, Siraree A, Yadav S, Kumar S, Singh J, Pandey DK, Singh RK (2015) Marker-trait association study for sucrose and yield contributing traits in sugarcane (Saccharum spp. hybrid). Euphytica 205(1):185–201

    Article  CAS  Google Scholar 

  • Baranek J, Konecka E, Kaznowski A (2017) Interaction between toxin crystals and vegetative insecticidal proteins of bacillus thuringiensis in lepidopteran larvae. BioControl 62:649–658

    Article  CAS  Google Scholar 

  • Barbosa MHP (2000) Perspectivas para o melhoramento da cana-de-açúcar. In: Raposo FV, Lambert ES, Alves GF, Mendonça HA, Faria MV, Gomes MS (eds) Anais do IV Simpósio de Atualização e Melhoramento de Plantas. Editora UFLA, Lavras, pp 1–17

    Google Scholar 

  • Barbosa MH, Resende MD, Bressiani JA, Silveira LC, Peternelli LA (2005) Selection of sugarcane families and parents by Reml/Blup. Crop Breed Appl Biotechnol 5:443–450

    Article  Google Scholar 

  • Barnes AC (1974) The sugarcane. Leonard Hills Books, London, 572 p

    Google Scholar 

  • Barreto FZ, Balsalobre TWA, Chapola RG, Hoffmann HP, Carneiro MS (2017) Validation of molecular markers associated with brown rust resistance in sugarcane. Summa Phytopathol 43(1):36–40. https://doi.org/10.1590/0100-5405/168917

    Article  Google Scholar 

  • Barreto FZ, Rosa JRBF, Balsalobre TWA, Pastina MM, Silva RR, Hoffmann HP, Pereira de Souza A, Garcia AAF, Carneiro MS (2019) A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). PLoS One 14(7):e0219843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholomé J, Bink MC, van Heerwaarden J et al (2016) Linkage and association mapping for two major traits used in the maritime pine breeding program: height growth and stem straightness [published correction appears in PLoS One. 2017 Jan 30;12 (1): e0171439]. PLoS One 11(11):e0165323. https://doi.org/10.1371/journal.pone.0165323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassi D, Menossi M, Mattiello L (2018) Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci Rep 8:2327. https://doi.org/10.1038/s41598-018-20653-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastos IT, Barbosa MHP, Cruz CD, Burnquist WL, Bressiani JA, Silva FD (2003) Análise dialélica em clones de cana-de-açúcar. Bragantia 62:199–206

    Article  Google Scholar 

  • Berding N, Roach BT (1987) Germplasm collection, maintenance and use. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 143–211

    Chapter  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury

    Google Scholar 

  • Besse P, McIntyre CL, Burner DM, de Almeida CG (1997) Using genomic slot blot hybridization to assess intergeneric Saccharum×Erianthus hybrids (Andropogoneae -Saccharinae). Genome 40:428–432

    Article  CAS  PubMed  Google Scholar 

  • Besse P, Taylor G, Carroll B, Berding N, Burner D, McIntyre CL (1998) Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104(2):143–153

    Article  CAS  PubMed  Google Scholar 

  • Bioversity International (2019) Celebrating 45 years of agrobiodiversity research. Rome, Bioversity International, 200p

    Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(pt 8):2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Borojevic S (1990) Principles and methods os plant breeding. Elsevier B.V, Amsterdam

    Google Scholar 

  • Borrás-Hidalgo O, Thomma BP, Carmona E, Borroto CJ, Pujol M, Arencibia A, Lopez J (2005) Identification of sugarcane genes induced in disease-resistant somaclones upon inoculation with Ustilago scitaminea or Bipolaris sacchari. Plant Physiol Biochem 43(12):1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Bressiani JA (2001) Seleção Sequencial em Cana-de-Açúcar. Ph.D. thesis, Universidade de São Paulo - USP/ESALQ

    Google Scholar 

  • Budzinski IGF, de Moraes FE, Regiani CT, Maria FLÃ, Alberto LC (2019) Network analyses and data integration of proteomics and metabolomics from leaves of two contrasting varieties of sugarcane in response to drought. Front Plant Sci 10:1574. https://doi.org/10.3389/fpls.2019.01524

    Article  Google Scholar 

  • Burdon RD, van Buijtenen JP (1990) Expected efficiencies of mating designs for reselection of parents. Can J For Res 20:1664–1671

    Article  Google Scholar 

  • Cai Q, Aitken K, Deng HH, Chen XW, Fu C, Jackson PA, McIntyre CL (2005) Verification of the introgression of Erianthus arundinaceus germplasm into sugarcane using molecular markers. Plant Breed 124:322–328

    Article  CAS  Google Scholar 

  • Cao K, Zhou Z, Wang Q, Guo J, Zhao P, Zhu G et al (2016) Genome-wide association study of 12 agronomic traits in peach. Nat Commun 7:13246. https://doi.org/10.1038/ncomms13246. PMID: 27824331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso-Silva CB, Costa EA, Mancini MC et al (2014) De novo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS One 9(2):e88462. Published 2014 Feb 11. https://doi.org/10.1371/journal.pone.0088462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo RO, Dookun-Saumtally A D’Hont A, Jackson P, Rossi-Machado G, Hale A Sampaio M, Hermann PH, Haihua D, Mirkov E, Mota C, Souza G (2013) Breaking breeding and biotechnology paradigms-towards a complementary approach. In: Sugar cane research: a summary of the tenth ISSCT breeding and germplasm and seventh molecular biology workshops. Proceedings of International Society of Sugar Cane Technology, vol 28, pp 1–9

    Google Scholar 

  • Cia MC, de Carvalho G, Azevedo RA, Monteiro-Vitorello CB, Souza GM, Nishiyama-Junior MY, Lembke CG, Raphael Severo da Cunha R, de Faria A, Rodrigues Marques JP, Melotto M, Camargo LEA (2018) Novel insights into the early stages of ratoon stunting disease of sugarcane inferred from transcript and protein analysis. Phytopathology 108(12):1455–1466

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro GM, Pan YB, Henry RJ (2003) Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci 165(1):181–189

    Article  CAS  Google Scholar 

  • Correr FH, Hosaka GK, Gómez SGP et al (2020) Time-series expression profiling of sugarcane leaves infected with Puccinia kuehnii reveals an ineffective defense system leading to susceptibility. Plant Cell Rep. https://doi.org/10.1007/s00299-020-02536-w. [published online ahead of print, 2020 Apr 20]

  • Costa EA, Anoni CO, Mancini MC, Santos FRC, Marconi TG, Gazaffi R et al (2016) QTL mapping including codominant SNP markers with ploidy level information in a sugarcane progeny. Euphytica 211(1):1–16

    Article  Google Scholar 

  • Costet L, Raboin LM, Payet M, D’Hont A, Nibouche S (2012) A major quantitative trait allele for resistance to the sugarcane yellow leaf virus (Luteoviridae). Plant Breed 131(5):637–640

    Article  CAS  Google Scholar 

  • Cox M (1996) Optimum family selection for Net Merit Grade in stage 2 trials. Technical report. SRA - Sugar Research Australia, Bundaberg

    Google Scholar 

  • Creste S, Sansoli DM, Tardiani ACS, Silva DN, Gonçalves FK, Fávero TM, Medeiros CNF, Festucci CS, Carlini-Garcia LA, Pinto LR (2010) Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Sugar Tech 12(2):150–154

    Article  CAS  Google Scholar 

  • CTNBio (2017) Comissão Técnica Nacional de Biossegurança, Extrato De Parecer Técnico N°5.483/2017. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19141678/do1-2017-06-27-extrato-de-parecer-tecnico-n-5-483-2017-19141574. Accessed 20 Sept 2020

  • Cunha C, Roberto G, Vicentini R et al (2017) Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening. Sci Rep 7:43364. https://doi.org/10.1038/srep43364

    Article  PubMed  PubMed Central  Google Scholar 

  • Cursi DE, Cox MC, Anoni CDO, Hoffmann HP, Gazaffi R, Garcia AAF (2020) Comparison of different selection methods in the seedling stage of sugarcane breeding. Agron J. https://doi.org/10.1002/agj2.20431. Accepted Author Manuscript

  • D’Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum×Erianthus arundinaceus, with molecular markers and DNA in situ hybridization. Theor Appl Genet 91:320–326

    Article  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250(4):405–413

    Article  PubMed  Google Scholar 

  • D’Hont A, Seshagiri Rao P, Alleyne S, Glaszmann JC, Feldmann P (1997) Application of molecular markers in sugarcane breeding. In: Proceedings West Indies sugar technologists, pp 77–79

    Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225.8

    Article  Google Scholar 

  • Da Silva J, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD et al (1995) Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP-and PCR-based markers. Mol Breed 1(2):165–179

    Article  CAS  Google Scholar 

  • Dal-Bianco M, Carneiro MS, Hotta CT, Chapola RG, Hoffmann HP, Garcia AA et al (2012) Sugarcane improvement: how far can we go? Curr Opin Biotechnol 23:265–270

    Article  CAS  PubMed  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 7–84

    Chapter  Google Scholar 

  • Dantas LLDB, Almeida-Jesus FM, de Lima NO et al (2020) Rhythms of transcription in field-grown sugarcane are highly organ specific. Sci Rep 10:6565. https://doi.org/10.1038/s41598-020-63440-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene forrust resistance linked with a RFLP marker in sugarcane cultivar “R570”. Theor Appl Genet 92:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Débibakas S, Rocher S, Garsmeur O, Toubi L, Roques D, D’Hont A, Hoarau JY, Daugrois JH (2014) Prospecting sugarcane resistance to sugarcane yellow leaf virus by genome-wide association. Theor Appl Genet 127(8):1719–1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deomano E, Jakson P, Wei X, Aitken K, Kota R, Pérez-Rodríguez P (2020) Genomic prediction of sugar content and cane yield in sugar cane clones in different stages of selection in a breeding program, with and without pedigree information. Mol Breed 40

    Google Scholar 

  • Devarumath RM, Kalwade SB, Kawar PG, Sushir KV (2012) Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers. Sugar Tech 14(4):334–344

    Article  CAS  Google Scholar 

  • Engelmann F, Arnao MTG, Paulet F, Roques D (2006) Cryopreservation as a tool for long-term conservation of sugarcane germplasm. In: Eighth ISSCT breeding and germplasm workshop. Proceedings of the International Society of Sugar Cane Technology, pp 37–38

    Google Scholar 

  • Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L et al (2012) microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One 7:e46703. https://doi.org/10.1371/journal.pone.0046703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira SS, Hotta CT, Poelking VGD et al (2016) Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. Plant Mol Biol 91:15–35. https://doi.org/10.1007/s11103-016-0434-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira et al (2017) Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01077

  • Ferreira DA, Martins MCM, Cheavegatti-Gianotto A et al (2018) Metabolite profiles of sugarcane culm reveal the relationship among metabolism and axillary bud outgrowth in genetically related sugarcane commercial cultivars. Front Plant Sci 9:857. https://doi.org/10.3389/fpls.2018.00857

    Article  PubMed  PubMed Central  Google Scholar 

  • Fier I, Balsalobre TWA, Chapola RG, Hoffmann HP, Carneiro MS (2020) Field resistance and molecular detection of the orange rust resistance gene linked to G1 marker in Brazilian cultivars of sugarcane. Summa Phytopathol 46(2):92–97

    Article  Google Scholar 

  • Fitch MMM, Moore PH (1996) Haploids of sugarcane. In: Fain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 3. Kluwer Academic, Dordrecht, pp 1–16

    Google Scholar 

  • Fontana PD, García MG, Cuenya MI, Chavanne E, Ontivero M, Díaz Ricci JC, Castagnaro AP (2003) Utilidad de la técnica de RAPD de alta resolución para la caracterización molecular de dos genotipos emparentados de caña de azúcar (Saccharum spp). Avance Agroindustrial 24(3):25–26

    Google Scholar 

  • Frankel OH, Bennett E (1970) Geneetic resources in plants – their exploration and conservation. In: International biological program handbook no. 11. Blackwell Scientific, Oxford, 554p

    Google Scholar 

  • Fukuhara S, Terajima Y, Irei S, Sakaigaichi T, Ujihara K, Sugimoto A, Matsuoka M (2013) Identification and characterization of intergeneric hybrid of commercial sugarcane (Saccharum spp. hybrid) and Erianthus arundinaceus (Retz.) Jeswiet. Euphytica 189:321–327

    Article  Google Scholar 

  • Galloway JH (1996) Botany in the service of empire: the Barbados cane-breeding program and the revival of the Caribbean sugar industry, 1880s-1930s. Ann Assoc Am Geogr 86(4):682–706

    Article  Google Scholar 

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM et al (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112(2):298–314

    Article  CAS  PubMed  Google Scholar 

  • Garcia AA, Mollinari M, Marconi TG, Serang OR, Silva RR, Vieira ML et al (2013) SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Sci Rep 3:3399. https://doi.org/10.1038/srep03399

    Article  PubMed  PubMed Central  Google Scholar 

  • Garsmeur O, Droc G, Antonise R et al (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9:2638. https://doi.org/10.1038/s41467-018-05051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS et al (2013) Effects of drought on the microtranscriptome of field-grown sugarcane plants. Planta 237:783–798. https://doi.org/10.1007/s00425-012-1795-7

    Article  CAS  PubMed  Google Scholar 

  • Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) MicroRNAs and drought responses in sugarcane. Front Plant Sci 6:58. https://doi.org/10.3389/fpls.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilmour A, Cullins R, Verbyla P (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2:269–293

    Article  Google Scholar 

  • Glynn NC, Laborde C, Davidson RW, Irey MS, Glaz B, D’Hont A, Comstock JC (2012) Utilization of a major brown rust resistance gene in sugarcane breeding. Mol Breed. https://doi.org/10.1007/s11032-012-9792-x

  • Gouy M, Rousselle Y, Bastianelli D et al (2013) Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet 126:2575–2586. https://doi.org/10.1007/s00122-013-2156-z

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Rousselle Y, Chane AT, Anglade A, Royaert S, Nibouche S, Costet L (2015) Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane. Euphytica 202(2):269–284

    Article  Google Scholar 

  • Guinet-Brial I, Bousquet JF, Darroussat MJ, Fernandez E, Daugrois JH (2016) Visacane, an overview of the distribution of disease-free sugarcane varieties for the last 10 years. Proc Int Soc Sugar Cane Technol 29:58–62

    Google Scholar 

  • Gutierrez AF, Hoy JW, Kimbeng CA, Baisakh N (2018) Identification of genomic regions controlling leaf scald resistance in sugarcane using a bi-parental mapping population and selective genotyping by sequencing. Front Plant Sci 9:877

    Article  PubMed  PubMed Central  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20(4):509–517

    Article  Google Scholar 

  • Heinz DJ, Tew TL (1987) Hybridization procedures. In: Heinz DJ (ed) Sugarcane improvement through breeding, chap 8, 11th edn. Elsevier B.V., Amsterdam, pp 313–342

    Chapter  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J et al (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105(6–7):1027–1037

    Article  PubMed  Google Scholar 

  • Hogarth DM (1987) Genetics of sugarcane. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier B.V., Amsterdam, pp 255–271

    Chapter  Google Scholar 

  • Hrishi N, Krishnamurthy TN, Marimuthammal S (1968) Studies in mutagenesis in sugarcane. Proc Indian Acad Sci Sect B 68:181–189. https://doi.org/10.1007/BF03051766

    Article  CAS  Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. TAG Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Islam N, Laksana C, Chanprame S (2016) Agrobacterium-mediated transformation and expression of bt gene in transgenic sugarcane. J ISSAAS 22:84–95

    Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crop Res 92:277–290

    Article  Google Scholar 

  • Jackson P (2018) Advances in conventional sugarcane breeding programmes. In: Rott P (ed) Achieving sustainable cultivation of sugarcane: breeding, pests and diseases, 1st edn. Burleigh Dodds Science Publishing, Cambridge, pp 75–98

    Chapter  Google Scholar 

  • Jackson P, Henry RJ (2011) Erianthus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, industrial crops. Springer, Berlin, pp 97–107

    Chapter  Google Scholar 

  • Jalaja NC, Sreenivasan TV (1992) Geneties and cytogeneties: anther culture. In: Mohan Naidu K, Arulraj S (eds) Annuual report of Sugarcane Breeding Institute, Coimbatore. Sugarcane Breeding Institute, Coimbatore, pp 34–35

    Google Scholar 

  • James G (2004) Sugarcane, 2nd edn. Blackwell Science, Oxford, 211 p

    Book  Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junior CADK, Manechini JRV, Corrêa RX, Pinto ACR, da Costa JB, Favero TM, Pinto LR (2020) Genetic structure analysis in sugarcane (Saccharum spp.) using target region amplification polymorphism (TRAP) markers based on sugar- and lignin-related genes and potential application in core collection development. Sugar Tech 22, 641–654. https://doi.org/10.1007/s12355-019-00791-0

  • Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F (2018) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16(4):856–866

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Pan YB, Iqbal J (2017) Development of an RAPD-based SCAR marker for smut disease resistance in commercial sugarcane cultivars of Pakistan. Crop Prot 94:166–172

    Article  Google Scholar 

  • Krishnamurthi M, Sundaram KS, Sekar S, Rajeswari S, Kawar PG (2007) Introgression of Erianthus for the development of commercial sugarcane cultivars. Proc Int Soc Sugar Cane Technol 26:678–680

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R et al (2016) Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci 7:833

    PubMed  PubMed Central  Google Scholar 

  • Li WF, Wang XY, Huang YK, Zhang RY, Shan HL, Yin J, Luo ZM (2017) Molecular detection of Bru1 gene and identification of brown rust resistance in Chinese sugarcane germplasm. Sugar Tech 19(2):183–190

    Article  CAS  Google Scholar 

  • Li WF, Shan HL, Zhang RY, Pu HC, Wang XY, Cang XY, Yin J, Luo ZM, Huang YK (2018) Identification of field resistance and molecular detection of the brown rust resistance gene Bru1 in new elite sugarcane varieties in China. Crop Prot 103:46–50

    Article  Google Scholar 

  • Liu P, Chandra A, Que Y, Chen PH, Grisham MP, White WH et al (2016) Identification of quantitative trait loci controlling sucrose content based on an enriched genetic linkage map of sugarcane (Saccharum spp. hybrids) cultivar ‘LCP 85-384’. Euphytica 207(3):527–549

    Article  CAS  Google Scholar 

  • Lorenzo JC, Ojeda E, Espinosa A et al (2001) Field performance of temporary immersion bioreactor-derived sugarcane plants. In Vitro Cell Dev Biol Plant 37:803–806. https://doi.org/10.1007/s11627-001-0133-8

    Article  Google Scholar 

  • Manechini JRV, Costa JB, Pereira BT, Carlini-Garcia L, Xavier MA, Landell MGA et al (2018) Unraveling the genetic structure of Brazilian commercial sugarcane cultivars through microsatellite markers. PLoS One 13(4):e0195623. pmid:29684082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maretski A (1987) Tissue culture: its prospects and problems. In: Heinz D (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, p 343

    Chapter  Google Scholar 

  • Margarido GRA, Pastina MM, Souza AP, Garcia AAF (2015) Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits. Mol Breed 35(8):175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin J, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829. Originally published online June 28, 2012

    Article  CAS  Google Scholar 

  • Martínez-Estrada E, Caamal-Velázquez JH, Salinas-Ruíz J et al (2017) Assessment of somaclonal variation during sugarcane micropropagation in temporary immersion bioreactors by intersimple sequence repeat (ISSR) markers. In Vitro Cell Dev Biol Plant 53:553–560. https://doi.org/10.1007/s11627-017-9852-3

    Article  CAS  Google Scholar 

  • Matsuoka S, Garcia AAF, Arizono H (1999) Melhoramento de Cana-de-açúcar. In: Borém A (ed) Melhoramento de Espécies Cultivadas. Universidade Federal de Viçosa, Viçosa, pp 205–252

    Google Scholar 

  • Maxted N, Kell S (2009) Establishment of a global network for the in-situ conservation of crop wild relatives: status and needs. Background study paper no. 39. FAO, Rome, 203p

    Google Scholar 

  • Maxted N, Kell S, Brehm JM (2011) Options to promote food security: on-farm management and in-situ conservation of plant genetic resources for food and agriculture. Commission on genetic resources for food and agriculture. Background study paper no. 51. FAO, Rome

    Google Scholar 

  • Mbuma NW, Zhou MM, van der Merwe R (2020) Estimating breeding values of genotypes for sugarcane yield using data from unselected progeny populations. Euphytica 216:2

    Article  CAS  Google Scholar 

  • McCord P, Glynn N, Comstock J (2019) Identifying markers for resistance to sugarcane orange rust (Puccinia kuehnii) via selective genotyping and capture sequencing. Euphytica 215(9):150

    Article  CAS  Google Scholar 

  • McRae TA, Erquiaga DL, Jensen LF, Rattey AR, Stringer JK (1998) BSES sugarcane breeding program in the Burdekin. In: Australian Society of Sugar Cane Technologists conference, Ballina, 1998. Proceedings. Watson Ferguson, Brisbane, pp 196–203

    Google Scholar 

  • Medeiros C, Balsalobre TWA, Carneiro MS (2020) Molecular diversity and genetic structure of Saccharum complex accessions. PLoS One 15(5):e0233211. https://doi.org/10.1371/journal.pone.0233211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes de Paula TO, Brasileiro BP, Cursi DE et al (2020) Establishment of gene pools for systematic heterosis exploitation in sugarcane breeding. Agron J 2020:1–12

    Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11(12):2075–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, Wang Y, Draye X, Moore P, Irvine J, Paterson A (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105(2–3):332–345

    Article  CAS  PubMed  Google Scholar 

  • Mohan C (2016) Genome editing in sugarcane: challenges ahead. Front Plant Sci 7:1542. https://doi.org/10.3389/fpls.2016.01542

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina L, Queme JL, Rosales F (2013) Comparative analysis between phenotype and Bru1 marker for incidence to brown rust in sugarcane. Proc Int Soc Sugar Cane Technol 28:738–743

    Google Scholar 

  • de Morais LK, de Aguiar MS, de Albuquerque e Silva P, Câmara TMM, Cursi DE, Júnior ARF, Chapola RG, Carneiro MS, Filho JCB (2015) Breeding of sugarcane. In: Cruz VMV, Dierig DA (eds) Industrial crops: breeding for bioenergy and bioproducts. Springer, New York, pp 29–42

    Chapter  Google Scholar 

  • Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61

    Article  Google Scholar 

  • Murad AM, Molinari HBC, Magalhàes BS, Franco AC et al (2014) Physiological and proteomic analyses of Saccharum spp. grown under salt stress. PLoS One 9:e98463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagatomi S (1982) Methods and problem of basic sugarcane breeding in Okinawa. Bull Okinawa Agric Exp Station 7:1–13. [In Japanese]

    Google Scholar 

  • Nagatomi S, Degi K (2007) Collection and description of wild sugarcane species indigenous to Japan. Proc Int Soc Sugar Cane Technol 26:745–748

    Google Scholar 

  • Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN, Sheji M (2006) Characterization of intergeneric hybrids of Saccharum using molecular markers. Genet Resour Crop Evol 53:163–169

    Article  CAS  Google Scholar 

  • Neuber AC, Santos FRC, Costa JB, Volpin M, Xavier MA, Perecin D, Burbano RCV, Landell MGA, Pinto LR (2017) Survey of the Bru1 gene for brown rust resistance in Brazilian local and basic sugarcane germplasm. Plant Breed 136:182–187. https://doi.org/10.1111/pbr.12463

    Article  CAS  Google Scholar 

  • Nibouche S, Raboin LM, Hoarau JY, D’Hont A, Costet L (2012) Quantitative trait loci for sugarcane resistance to the spotted stem borer Chilo sacchariphagus. Mol Breed 29(1):129–135

    Article  Google Scholar 

  • Nikam Ashok A, Devarumath RM, Ahuja A, Babub H, Shitole MG, Suprasanna P (2015) Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.). Crop J 3(1):46–56. https://doi.org/10.1016/j.cj.2014.09.002

    Article  Google Scholar 

  • Nikpay A, Vejar-Cota G, Budeguer F, Goebel FR, Perera MF, Qin ZQ (2020) Agroecological management of stem borers for healthy seed production in sugarcane. In: Tiwari AK (ed)Advances in seed production and management. En prensa https://doi.org/10.1007/978-981-15-4198-8_3

  • Noguera AS, Enrique R, Perera MF, Ostengo S, Racedo J, Costilla D, Zossi S, Cuenya MI, Filippone MP, Welin B, Castagnaro AP (2015a) Genetic characterization and field evaluation to recover parental phenotype in transgenic sugarcane: a step towards commercial release. Mol Breed 35:115. https://doi.org/10.1007/s11032-015-0300-y

    Article  CAS  Google Scholar 

  • Noguera AS, Paz NV, Díaz ME, Perera MF, Díaz Romero C, García MB, Filippone MP, Welin B, Cuenya MI, Digonzelli PA, Castagnaro AP (2015b) Production of healthy seed cane in Tucumán, Argentina. Int Sugar J (6)112–116

    Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM et al (2007) Functional integrated genetic linkage map based on ESTmarkers for a sugarcane (Saccharum spp.) commercial cross. 2007. Mol Breed 20:189–208

    Article  CAS  Google Scholar 

  • Pacheco CM, Pestana-Calsa MC, Gozzo FC, Nogueira RJMC, Menossi MTC (2013) Differentially delayed root proteome responses to salt stress in sugar cane varieties. J Proteome Res 12:5681–5695

    Article  CAS  PubMed  Google Scholar 

  • Palhares AC, Rodrigues-Morais TB, Van Sluys MA, Domingues DS, Maccheroni W, Jordão H et al (2012) A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genet 13:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey RN, Rastogi J, Sharma ML, Singh RK (2011) Technologies for cost reduction in sugarcane micropropagation. Afr J Biotechnol 10:7814–7819

    CAS  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vencio RZ, Felix JM, Branco DS, Waclawovsky AJ, Del Bem LE, Lembke CG, Costa MD, Nishiyama MY Jr et al (2009) Sugarcane genes associated with sucrose content. BMC Genomics 10:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parco AS, Avellaneda MC, Hale AH, Hoy JW, Kimbeng CA, Pontif MJ, Gravois KA, Baisakh N (2014) Frequency and distribution of the brown rust resistance gene Bru1 and implications for the Louisiana sugarcane breeding programme. Plant Breed 133:654–659

    Article  CAS  Google Scholar 

  • Parisi C, Tillie P, Rodríguez-Cerezo E (2016) The global pipeline of GM crops out to 2020. Nat Biotechnol 34:32–36

    Article  CAS  Google Scholar 

  • Parthasanrathy N (1946) The probable origin of north Indian sugarcanes. J Indian Bot Soc 1946:133–150

    Google Scholar 

  • Pastina MM, Malosetti M, Gazaffi R, Mollinari M, Margarido GRA, Oliveira KM et al (2012) A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theor Appl Genet 124(5):835–849

    Article  CAS  PubMed  Google Scholar 

  • Perera MF, Arias ME, Costilla D, Luque AC, García MB, Cuenya MI, Racedo J, Ostengo S, Filippone MP, Castagnaro AP (2012) Genetic diversity assessment and genotype identification in sugarcane based on DNA markers and morphological traits. Euphytica 185(3):491–510. https://doi.org/10.1007/s10681-012-0661-9

    Article  Google Scholar 

  • Perera MF, Racedo J, García MG, Pardo EM, Rocha CML, Orce IG, Chiesa MA, Filippone MP, Welin B, Castagnaro AP (2016) Use of molecular markers to improve the agro-industrial productivity in the north west of Argentina. Mol Biol 5:153. https://doi.org/10.4172/2168-9547.1000153

    Article  Google Scholar 

  • Perera MF, Costilla D, Ovejero NS, Aybar Guchea M, Figueroa MF, Noguera AS, Cuenya MI, Castagnaro AP (2020) Caracterización botánica mediante marcadores fenotípicos y moleculares de variedades de caña de azúcar obtenidas por el Programa de Mejoramiento Genético de la EEAOC. Revista Industrial y Agrícola de Tucumán. Tomo 97(2):5–9

    Google Scholar 

  • Piepho HP, Mohring J, Mechinger AE, Buchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228

    Article  Google Scholar 

  • Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC et al (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica 172(3):313–327

    Article  CAS  Google Scholar 

  • Piperidis N, D’Hont A (2020) Sugarcane genome architecture decrypted with chromosome-specific oligo probes. Plant J. https://doi.org/10.1111/tpj.14881

  • Piperidis G, Christopher MJ, Carroll BJ, Berding N, D’Hont A (2000) Molecular contribution to selection of intergenic hybrids between sugarcane and the wild species Erianthis arundinaceus. Genome 43:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010a) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Gen Genomics 284(1):65–73. https://doi.org/10.1007/s00438-010-0546-3

    Article  CAS  Google Scholar 

  • Piperidis N, Chen JW, Deng HH, Wang LP, Jackson P, Piperidis G (2010b) GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome 53:331–336

    Article  CAS  PubMed  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugar canes. Econ Bot 17(2):97–106

    Article  Google Scholar 

  • Racedo J, Perera MF, Bertani R, Funes C, González V, Cuenya MI, D’Hont A.; Welin B. and Castagnaro, A.P. (2013) Alternative sources of resistance to sugarcane brown rust disease. Euphytica 191:429–436. https://doi.org/10.1007/s10681-013-0905-3

    Article  CAS  Google Scholar 

  • Racedo J, Gutierrez L, Perera MF, Ostengo S, Pardo EM, Cuenya MI, Welin B, Castagnaro AP (2016) Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol 16:142. https://doi.org/10.1186/s12870-016-0829

    Article  PubMed  PubMed Central  Google Scholar 

  • Resende MDV (2004) BLUP for phenotypic selection in plant breeding and variety testing. Documentos Embrapa Floresta, Colombo

    Google Scholar 

  • Resende MDV, Barbosa (2005) Melhoramento genético de plantas de propagação assexuada. Embrapa Florestas, Colombo, 130p

    Google Scholar 

  • Resende MDV, Barbosa MHP (2006) Selection via simulated individual BLUP based on family genotypic effects in sugarcane. Pesq Agrop Brasileira 41:421–429

    Article  Google Scholar 

  • Sakaigaichi T et al (2019) Evaluation of sugarcane smut resistance in wild sugarcane (Saccharum spontaneum L.) accessions collected in Japan. Plant Prod Sci 22(2):327–332

    Article  CAS  Google Scholar 

  • Sarwar M, Siddiqui SU (2004) In vitro conservation of sugarcane (Saccharum officinarum L.) germplasm. Pak J Bot 36(3):549–556

    Google Scholar 

  • Shearman Jeremy R, Chutima Sonthirod, Chaiwat Naktang, et al (2018) Assembling a hybrid sugarcane genome. In: PAG conference

    Google Scholar 

  • Sills GR, Bridges W, Al-Janabi SM, Sobral BW (1995) Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. Ex Grassl). Mol Breed 1(4):355–363

    Article  CAS  Google Scholar 

  • Singh RK, Jena SN, Khan S, Yadav S, Banarjee N, Raghuvanshi S et al (2013) Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene 524(2):309–329

    Article  CAS  PubMed  Google Scholar 

  • Siraree A, Banerjee N, Kumar S, Khan MS, Singh PK, Kumar S, Sharma S, Singh RK, Singh J (2017) Identification of marker-trait associations for morphological descriptors and yield component traits in sugarcane. Physiol Mol Biol Plants 23(1):185–196. https://doi.org/10.1007/s12298-016-0403-x

    Article  PubMed  Google Scholar 

  • Souza GM, Van Sluys MA, Lembke CG, Lee H, Margarido GRA, Hotta CT et al (2019) Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world’s leading biomass crop. GigaScience 8(12):giz129. https://doi.org/10.1093/gigascience/giz129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24(2):267–281

    Article  Google Scholar 

  • Stolton S, Maxted N, Ford-Lloyd B, Kell SP, Dudley N (2006) Food stores: using protected areas to secure crop genetic diversity. WWF arguments for protection series. WWF, Gland

    Google Scholar 

  • Stringer JK (2006) Joint modelling of spatial variability and interplot competition to improve the efficiency of plant improvement. PhD thesis, University of Queensland, Brisbane

    Google Scholar 

  • Stringer JK, Cox MC, Atkin FC, Wei X, Hogarth DM (2011) Family selection improves the efficiency and effectiveness of selecting original seedlings and parents. Sugar Tech 13:36–41

    Article  Google Scholar 

  • Sugiharto B, Ermawati N, Mori H, Aoki K et al (2002) Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane. Plant Cell Physiol 43:350–354

    Article  CAS  PubMed  Google Scholar 

  • Suman A, Kimbeng CA, Edmé SJ, Veremis J (2008) Sequence-related amplified polymorphism (SRAP) markers for assessing genetic relationships and diversity in sugarcane germplasm collections. Plant Genet Resour 6(3):222

    Article  Google Scholar 

  • Temam AH, Alemayehu LA (2017) Sugarcane (Saccharum Officinarum L) tissue culture in Ethiopia: opportunities for Ethiopia’s sugar industries. Int J Sci Technol Res 6(8):398–406

    Google Scholar 

  • Terajima Y, Tippayawat A, Ponragdee W, Sansayawichai T, Irei S, Sugimoto A, Takagi H, Hayashi H (2019) Application of a delayed heading technique to early-heading Erianthus arundinaceus native to Thailand for intergeneric crossing with sugarcane. Trop Agric Dev 63(1):1–11

    Google Scholar 

  • Thelen JJ, Peck SC (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19:3339–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37:169–180

    Article  CAS  PubMed  Google Scholar 

  • Umeda M et al (2019) QTL detection for smut resistance inherited from a Japanese wild sugarcane in the progeny of an interspecific cross. Proc Int Soc Sugar Cane Technol 30:1348–1353

    Google Scholar 

  • Vicentini, Renato et al (2015) Large-scale transcriptome analysis of two sugarcane genotypes contrasting for lignin content. PLoS One 10(8):e0134909. https://doi.org/10.1371/journal.pone.0134909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira MLC, Almeida CB, Oliveira CA, Tacuatiá LO, Munhoz CF, Cauz-Santos LA, Pinto LR, Monteiro-Vitorello CB, Xavier MA, Forni-Martins ER (2018) Revisiting meiosis in sugarcane: chromosomal irregularities and the prevalence of bivalent configurations. Front Genet 9:213. https://doi.org/10.3389/fgene.2018.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk GM, Jenderek MM, Staats E, Shepherd A, Bonnart R, Ledo A, Ayala-Silva T (2019) Challenges in the development of a widely applicable method for sugarcane (Saccharum spp.) shoot tip cryopreservation. Acta Hortic 1234:335–342

    Article  Google Scholar 

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686. https://doi.org/10.1007/s00122-018-3270-8

    Article  PubMed  Google Scholar 

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276

    Article  CAS  PubMed  Google Scholar 

  • Watson JW, Eyzaguirre PB (eds) (2002) Proceedings of the second international home gardens workshop: contribution of home gardens to in situ conservation of plant genetic resources in farming systems, Witzenhausen, Federal Republic of Germany, 17–19 July 2001. International Plant Genetic Resources Institute, Rome, 117p

    Google Scholar 

  • Wei X, Jackson PA, McIntyre CL, Aitken KS, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114(1):155–164

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Jackson PA, Hermann S, Kilian A, Heller-Uszynska K, Deomano E (2010) Simultaneously accounting for population structure, genotype by environment interaction, and spatial variation in marker–trait associations in sugarcane. Genome 53(11):973–981

    Article  PubMed  Google Scholar 

  • Yadav S, Jackson P, Wei X, Ross EM, Aitken K, Deomano E, Atkin F, Hayes BJ, Voss-Fels KP (2020) Accelerating genetic gain in sugarcane breeding using genomic selection. Agronomy 10:585

    Article  CAS  Google Scholar 

  • Yang X, Islam MS, Sood S, Maya S, Hanson EA, Comstock J, Wang J (2018) Identifying quantitative trait loci (QTLs) and developing diagnostic markers linked to orange rust resistance in sugarcane (SaccharumA spp.). Front Plant Sci 9(March):1–10. https://doi.org/10.3389/fpls.2018.00350

    Article  Google Scholar 

  • Yang X, Sood S, Luo Z, Todd J, Wang J (2019) Genome-wide association studies identified resistance loci to orange rust and yellow leaf virus diseases in sugarcane (Saccharum spp.). Phytopathology 109(4):623–631

    Article  CAS  PubMed  Google Scholar 

  • You-Xiong Q, Jian-Wei L, Xian-Xian S, Li-Ping X, Ru-Kai C (2011) Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP. J Biomed Biotechnol 2011:160934

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X et al (2018) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50(11):1565–1573

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Eduardo Cursi .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cursi, D.E. et al. (2022). Origin, Genetic Diversity, Conservation, and Traditional and Molecular Breeding Approaches in Sugarcane. In: Priyadarshan, P., Jain, S.M. (eds) Cash Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-74926-2_4

Download citation

Publish with us

Policies and ethics