Skip to main content
Log in

Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane

  • Original Paper
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In this study we used amplified fragment length polymorphism (AFLP) and microsatellite (short sequence repeat or SSR) markers to identify a major quantitative trail locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. A bi-parental cross between a resistant variety, M 134/75, and a susceptible parent, R 570, generated a segregating population of 227 individuals. These clones were evaluated for yellow spot infection in replicated field trials in two locations across two consecutive years. A χ2-test (χ2 at 98% confidence level) of the observed segregation pattern for yellow spot infection indicated a putative monogenic dominant inheritance for the trait with a 3 (resistant):1(susceptible) ratio. The AFLP and SSR markers identified 666 polymorphisms as being present in the resistant parent and absent in the susceptible one. A genetic map of M 134/75 was constructed using 557 single-dose polymorphisms, resulting in 95 linkage groups containing at least two markers based on linkages in coupling. QTL analysis using QTLCartographer v1.17d and MAPMAKER/QTL v1.1 identified a single major QTL located on LG87, flanked by an AFLP marker, actctc10, and an SSR marker, CIR12284. This major QTL, which was found to be linked at 14 cM to an AFLP marker, was detected with LOD 8.7, had an additive effect of −10.05% and explained 23.8% of the phenotypic variation of yellow spot resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aljanabi SM, Forget L, Dookun A (1999) An improved and rapid protocol for the isolation of polysaccharide and polyphenol-free sugarcane DNA. Plant Mol Biol Rep 17:1–8

    Article  Google Scholar 

  • Aljanabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Saccharum spontaneum (L.) ‘SES 208’. Genetics 134:1249–1260

    CAS  Google Scholar 

  • Aljanabi SM, Honeycutt RH, Sobral BWS (1994) Chromosome assortment in Saccharum. Theor Appl Genet 89:959–963

    Google Scholar 

  • Autrey LJC, Ricaud C, Sullivan S, Dhayan S (1983) Control of yellow spot disease of sugarcane by aerial application of fungicide. Sugar Y Azucar 78:23–25

    Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (2001) QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, N.C.

    Google Scholar 

  • Brandes EW, Sartoris GB, Grassl CO (1939) Assembling and evaluating wild forms of sugarcane and closely related plants. Proc Int Soc Sugarcane Technol Congr 6:128–154

    Google Scholar 

  • Burner DM, Legendre BL (1993) Chromosome transmission and meiotic stability of sugarcane (Saccharum spp.) hybrid derivatives. Crop Sci 33:600–606

    Article  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum. Grasses of the world. Kew Bulletin Additional Series XIII, Royal Botanical Gardens, Kew. Her Majesty’s Stationery Office, London

  • Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum sp.) ESTs cross transferable to Erianthus and sorghum. Plant Sci 160:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution in breeding. In: Heinz DJ (ed) Sugar cane improvement through breeding. Elsevier Press, Amsterdam, pp 7–84

    Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with a RFLP markers in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • D’Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum×Erianthus arundinaceus, with molecular markers and DNA in situ hybridization. Theor Appl Genet 91:320–326

    Article  CAS  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao PS, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars, (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  CAS  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Plant Phytopathol 9:275–296

    Article  Google Scholar 

  • Graham MA, Marek LF, Lohnes D, Cregan P, Schoemaker RC (2000) Expression and genome organization of resistance gene analogs in soybean. Genome 43:86–93

    Article  PubMed  CAS  Google Scholar 

  • Guimarães CT, Sills GR, Sobral BWS (1997) Comparative mapping of andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266

    Article  PubMed  Google Scholar 

  • Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K (1999) Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol Biol 39:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques J, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for␣yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Hyne V, Kearsey MJ (1995) QTL analysis: further use of ‘marker regression’. Theor Appl Genet 91:471–476

    Article  Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Jansen RC, Van Ooijen JW, Stamp P, Lister C, Dean C (1995) Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Ming R, Liu S-C, Lin Y-R, da Silva J, Wilson W, Braga D, Van Deynze A, Wenslaff TF, Wu KK, Moore PH (1998) Detailed alignment of Saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL Analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Bowers JE, Moore PH, Irvine JE, Paterson AH (2002) Construction of Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583

    Article  CAS  Google Scholar 

  • Moore PH, Irvine JE (1991) Genome mapping of sugarcane and its potential contribution in improvement and selection of new varieties. Proc S Afr Sugarcane Technol Assoc 65:95–102

    Google Scholar 

  • MSIRI-Mauritius Sugar Industry Research Institute (2002) MSIRI Annual Report, Réduit, Mauritius

  • Mudge J, Anderson WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366

    Article  CAS  Google Scholar 

  • Ramdoyal K, Domaingue R, Sullivan S, Autrey LJC (1996) Studies on the inheritance of yellow spot (Mycovellosiella koepkei) disease in sugarcane. Proc Int Soc Sugarcane Technol Congr 22:540–547

    Google Scholar 

  • Ricaud C (1970) Mauritius Sugar Industry Research Institute Annual Report 1969. Réduit, Mauritius, pp 68–71

  • Ricaud C (1974) Factors affecting yellow spot development, its control and effect on sugar yields. Proc Int Soc Sugarcane Technol Congr 15:354–364

    Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics 269:406–419

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1990) SAS procedure guide, version 6, 3rd edn. SAS Institute, Cary, N.C.

  • Schon CC, Melchinger AE, Boppenmaier J, Bruklaus-Jung E, Herrmann RG, Seitzer JF (1994) RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34:378–389

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete sample). Biometrica 52:591–611

    Article  Google Scholar 

  • Sills GR, Bridges WC, Aljanabi SM, Sobral BWS (1995) Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. Ex Grassl). Mol Breed 1:355–363

    Article  CAS  Google Scholar 

  • da Silva JG, Honeycutt RJ, Burnquist W, Aljanabi SM, Sorrells ME, Tanksley SD, Sobral BWS (1995) Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP and PCR-based markers. Mol Breed 1:165–179

    Article  Google Scholar 

  • da Silva J, Sorrells ME (1996) Linkage analysis in polyploids using molecular markers. In: Jauhar PR (ed) Methods of genome analysis in plants. CRC Press, Boca Raton, FL, pp 211–228

    Google Scholar 

  • da Silva J, Sorrells ME, Burnquist WL, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–792

    CAS  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helenjaris T, Lander SE (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Tang X, Reid D, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274:2060–2063

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Veldboom LR, Lee M (1996) Genetic mapping of quantitative trait loci in maize in stress and non-stress environments: I. grain yield and yield components. Crop Sci 36:1310–1319

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Fritjters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2003) WINDOWS QTL CARTOGRAPHER, ver. 2.0. Department of Statistics, North Carolina State University, Raleigh, N.C. http://www.statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Andrew Paterson and Ray Ming for the critical review and constructive comments of the manuscript, the International Consortium for Sugarcane Biotechnology for providing the sugarcane microsatellite primers, T. Olsen, Iowa State University, USA, for valuable assistant with SAS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dookun-Saumtally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aljanabi, S., Parmessur, Y., Kross, H. et al. Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breeding 19, 1–14 (2007). https://doi.org/10.1007/s11032-006-9008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9008-3

Keywords

Navigation