Skip to main content
Log in

Identification of marker-trait associations for morphological descriptors and yield component traits in sugarcane

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Ninety two sugarcane varieties from sub-tropical India were subjected to molecular profiling with 174 simple sequence repeat markers and characterized for 23 qualitative (morphological descriptors) and nine quantitative traits that directly or indirectly contribute to yield and juice quality. Using STRUCTURE-based population stratification study and a mixed linear model for marker-trait association (MTA) analysis, a total of 60 MTAs were identified for 22 qualitative traits that were able to explain a significantly higher (up to 40%) proportion of the phenotypic variations compared to all the previous reports of MTA studies in sugarcane. In addition, 21 MTAs stable over the three years of study were also identified for nine quantitative traits that explained 16–37% of the total trait variation. It could be concluded that the qualitative traits that are governed mostly by one or a few genes are more responsive to MTA studies and hence have a better potential to be adopted in marker-assisted breeding programmes in sugarcane. The MTAs identified in this study could also find significant applications in upcoming more stringent IP regime, which may necessitate tracking of specific alleles integrated in breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen CJ, Mackay MJ, Aylward JH, Campbell JA (1997) New technologies for sugar milling and by-product modification. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 267–285

    Google Scholar 

  • Anonymous (2009) Specific DUS test guidelines for three notified crops, PPV&FRA, Publication No. SG/16/2009. Plant Var J India 3(9):42–54

    Google Scholar 

  • Banerjee N, Siraree A, Yadav S, Kumar S, Singh J, Kumar S, Pandey DK, Singh RK (2015) Marker-trait association study for sucrose and yield contributing traits in sugarcane (Saccharum spp. hybrid). Euphytica 205:185–201

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet 32(3):314

    CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Tassel: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL (2005) Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crop Res 92:137–147

    Article  Google Scholar 

  • Chaudhary RR (2001) Genetic variability and heritability in sugarcane. Nepal Agric Res J 5:56–59

    Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  Google Scholar 

  • daCosta MLM, Amorim LLB, Onofre AV, deMelo LJT, deOliveira MBM, deCarvalho R, Benko-Iseppon AM (2011) Assessment of genetic diversity in contrasting sugarcane varieties using inter-simple sequence repeat (ISSR) markers. Am J Plant Sci 2(03):425

    Article  CAS  Google Scholar 

  • Debibakas S, Rocher S, Garsmeur O, Toubi L, Roques D, D’Hont A, Hoarau JY, Daugrois JH (2014) Prospecting sugarcane resistance to sugarcane yellow leaf virus by genome-wide association. Theor Appl Genet 127(8):1719–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–14

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Matthew S, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 4:574–578

    Article  Google Scholar 

  • FAO (2013) Food and Agriculture Organization of the United Nations Statistics Division, http://www.fao.org. Accessed on 16 Jan 2016

  • Govindaraj P, Balasundaram N, Sharma TR, Bansal KC, Koundal KR, Singh NK (2005) Development of new STMS markers for sugarcane. Sugarcane Breeding Institute, Coimbatore, Tamilnadu, India. http://www.nrcpb.org/content/development-new-stms-markers-sugarcane. Accessed 25 July 2009

  • Grivet L, Daniels C, Glaszmann JC, D’Hont A (2004) A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobotany Res Appl 2:9–17

    Article  Google Scholar 

  • Guoy M, Rousselle Y, Chane AT, Anglade A, Royaert S, Nibouche S, Costet L (2015) Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane. Euphytica 202:269–284

    Article  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hutson AM, Liu Z, Kucuktas H, Umali-Maceina G, Su B, Dunham RA (2014) A QTL map for growth and morphometric traits using a channel catfish × blue catfish interspecific hybrid system. J Anim Sci 92:1850–1865

    Article  CAS  PubMed  Google Scholar 

  • Johnson HW, Robinson HF, Comstock RI (1955) Estimates of genetic and environmental variability in soybeans. Agron J 47:314–318

    Article  Google Scholar 

  • Kang SA, Noor M, Khan FA, Saeed F (2013) Divergence analysis and association of some economical characters of sugarcane (Saccharum officinarum L.). J Plant Breed Genet 1:1–6

    Google Scholar 

  • Mohlke KL, Lange EM, Valle TT, Ghosh S, Magnuson VL, Silander K, Collins FS (2001) Linkage disequilibrium between microsatellite markers extends beyond 1 cM on chromosome 20 in Finns. Genome Res 11(7):1221–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52:191–209

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338

    Article  CAS  PubMed  Google Scholar 

  • Pinto LR, Oliveira KM, Ulian EC, Garcia AA, deSouza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804

    Article  CAS  PubMed  Google Scholar 

  • Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC, Souza AP (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica 172(3):313–327

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multi-locus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanghera GS, Kumar R, Tyagi V, Thind KS, Sharma B (2015) Genetic divergence among elite sugarcane clones (Saccharum officinarum L.) based on cane yield and quality traits from northern India. J Exp Biol Agric Sci 3(2):185–190

    Google Scholar 

  • Singh RK, Jena SN, Khan S, Yadav S, Banarjee N (2013) Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene 524:309–329

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Banerjee N, Khan MS, Yadav S, Kumar S, Duttamajumder SK, Lal RJ, Patel JD, Guo H, Zhang D, Paterson AH (2016) Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping. Mol Genet Genomics 291(3):1363–1377

    Article  CAS  PubMed  Google Scholar 

  • Stevenson GC (1965) Genetics and breeding of sugarcane. Longmans, London

    Google Scholar 

  • Varshney RK, Tuberosa R (2013) Translational genomics in crop breeding for biotic stress resistance: an introduction. In: Translational genomics for crop breeding: biotic stress. Wiley, London, pp 1–9

  • Walker DIT (1987) Manipulating the genetic base of sugarcane. In: Copersucar international sugarcane breed. Workshop, Copersucar, Sao Paulo, pp 321–334

  • Wei X, Phillip AJ, McIntyre CL, Aitken KS, Barry C (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114:155–164

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Jackson PA, Hermann S, Kilian A, Heller-Uszynska K, Deomano E (2010) Simultaneously accounting for population structure, genotype by environment interaction, and spatial variation in marker-trait associations in sugarcane. Genome 53:973–981

    Article  PubMed  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Q, Xu L, Zheng Y, Que Y (2013) Genetic diversity analysis of sugarcane parents in Chinese breeding programmes using gSSR markers. Sci World J. doi:10.1155/2013/613062

    Google Scholar 

Download references

Acknowledgements

This work was funded by research grant from Protection of Plant Varieties and Farmers’ Rights Authority in the form of a project on DUS Testing under Central Sector Scheme for Implementation of PVP Legislation to JS, PKS and AS. The author NB acknowledges the support in the form of a research grant under DBT-BioCARe award from Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India. The authors are thankful to the Director, ICAR-Indian Institute of Sugarcane Research, Lucknow for providing infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsnendra Singh.

Ethics declarations

Conflict of interest

All the authors declare that they do not have any conflict of interest with this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 289 kb)

Supplementary material 2 (PDF 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siraree, A., Banerjee, N., Kumar, S. et al. Identification of marker-trait associations for morphological descriptors and yield component traits in sugarcane. Physiol Mol Biol Plants 23, 185–196 (2017). https://doi.org/10.1007/s12298-016-0403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-016-0403-x

Keywords

Navigation