Skip to main content

MALDI-TOF Mass Spectrometry-Based Microbial Identification

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

Rapid and accurate species identification of bacteria, fungi, and viruses is a fundamental requirement in clinical and food microbiology and other fields of microbiology diagnostics. Whereas virus recognition is usually achieved within hours by either serological tests or genotyping approaches using various nucleic acid detection systems, the conventional identification of bacteria and fungi still mainly relies on methods that include laborious and time-consuming initial cultivation and ensuing isolation of the microorganism. This approach is therefore dependent on the generation time (growth) of the particular microorganism, resulting in assay durations of 16–24 h minimum, e.g., in the case of Enterobacteriaceae or other fast-growing prokaryotes, and up to several weeks in the case of slow-growing mycobacteria and some fungi. Though species identification of a pure culture is achievable within 24–48 h with various (semi-)automated systems, additional isolation steps are frequently necessary, which can extend the time until diagnosis by days, e.g., if the potential pathogen must be separated from the physiological background flora. Realistically species assignment of a putative pathogen from a nonsterile specimen takes at least 2–3 days. In many areas of patient care, elapsed time until diagnosis may considerably reduce the therapeutic quality of care due to a lack of information about the infecting pathogen. Therefore, a rapid species diagnosis is of high priority as a focused therapy might be lifesaving for the patient [1, 2]. Similarly, a timely diagnosis is imperative for surveillance studies or screenings with particular demands during outbreak situations of foodborne pathogens or preadmission screening to detect multiresistant bacteria in the hospital setting [3, 4]. Both species identification and resistance testing are of equal importance; however, this chapter focuses primarily on species identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park BS, Park YJ, Kim YJ et al (2008) A case of disseminated Nocardia farcinica diagnosed through DNA sequencing in a kidney transplantation patient. Clin Nephrol 70:542–545

    PubMed  CAS  Google Scholar 

  2. O’Riordan P, Schwab U, Logan S et al (2008) Rapid molecular detection of rifampicin resistance facilitates early diagnosis and treatment of multi-drug resistant tuberculosis: case control study. PLoS One 3:e3173

    Article  PubMed  CAS  Google Scholar 

  3. Kumar A, Roberts D, Wood KE et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596

    Article  PubMed  Google Scholar 

  4. Harbarth S, Masuet-Aumatell C, Schrenzel J et al (2006) Evaluation of rapid screening and pre-emptive contact isolation for detecting and controlling methicillin-resistant Staphylococcus aureus in critical care: an interventional cohort study. Crit Care 10:R25

    Article  PubMed  Google Scholar 

  5. Bergey DH, Garrity GM (2005) Volume 2: the proteobacteria. Springer, Berlin (ISBN no. 978-0-387-95040-2)

    Google Scholar 

  6. O’Hara CM (2005) Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic gram-negative bacilli. Clin Microbiol Rev 18:147–162

    Article  PubMed  CAS  Google Scholar 

  7. Gilligan PH (1991) Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4:35–51

    PubMed  CAS  Google Scholar 

  8. Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Article  PubMed  CAS  Google Scholar 

  9. Harmsen D, Karch H (2004) 16S rDNA for diagnosing pathogens: a living tree. ASM News 70:19–24

    Google Scholar 

  10. Groth I, Schumann P, Martin K et al (1999) Ornithinicoccus hortensis gen. nov., sp. nov., a soil actinomycete which contains l-ornithine. Int J Syst Bacteriol 49:1717–1724

    Article  PubMed  CAS  Google Scholar 

  11. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    PubMed  CAS  Google Scholar 

  12. Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692

    Article  PubMed  CAS  Google Scholar 

  13. Huber CG, Oberacher H (2001) Analysis of nucleic acids by on-line liquid chromatography-mass spectrometry. Mass Spectrom Rev 20:310–343

    Article  PubMed  CAS  Google Scholar 

  14. Wang H, Hanash S (2005) Intact-protein based sample preparation strategies for proteome analysis in combination with mass spectrometry. Mass Spectrom Rev 24:413–426

    Article  PubMed  CAS  Google Scholar 

  15. Müthing J, Distler U (2009) Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. Mass Spectrom Rev 29(3):425–479 [Epub ahead of print]

    Google Scholar 

  16. Ho YP, Reddy PM (2011) Advances in mass spectrometry for the identification of pathogens. Mass Spectrom Rev 30(6):1203–1224 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  17. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka K, Waki H, Ido Y, Akita S, Yishida Y, Yshida T (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  19. Hillenkamp F, Peter-Katalinic J (2007) MALDI MS. A practical guide to instrumentation, methods and applications. Wiley-VCH, Weinheim, ISBN no. 3-527-31440-7

    Google Scholar 

  20. Dreisewerd K (2003) The desorption process in MALDI. Chem Rev 103:395–426

    Article  PubMed  CAS  Google Scholar 

  21. Hall TA, Budowle B, Jiang Y et al (2005) Base composition analysis of human mitochondrial DNA using electrospray ionization mass spectrometry: a novel tool for the identification and differentiation of humans. Anal Biochem 344:53–69

    Article  PubMed  CAS  Google Scholar 

  22. Muddiman DC, Anderson GA, Hofstadler SA, Smith RD (1997) Length and base composition of PCR-amplified nucleic acids using mass measurements from electrospray ionization mass spectrometry. Anal Chem 69:1543–1549

    Article  PubMed  CAS  Google Scholar 

  23. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586

    Article  PubMed  CAS  Google Scholar 

  24. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:157–171

    Article  PubMed  CAS  Google Scholar 

  25. Holland RD, Wilkes JG, Rafii F et al (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232

    Article  PubMed  CAS  Google Scholar 

  26. Krishnamurthy T, Ross PL, Rajamani U (1996) Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:883–888

    Article  PubMed  CAS  Google Scholar 

  27. Smole SC, King LA, Leopold PE, Arbeit RD (2002) Sample preparation of Gram-positive bacteria for identification by matrix assisted laser desorption/ionization time-of-flight. J Microbiol Methods 48:107–115

    Article  PubMed  CAS  Google Scholar 

  28. Wang Z, Russon L, Li L, Roser DC, Long SR (1998) Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 12:456–464

    Article  PubMed  CAS  Google Scholar 

  29. Maier T, Kostrzewa M (2007) Fast and reliable MALDI-TOF MS-based microorganism identification. Chem Today 25:68–71

    CAS  Google Scholar 

  30. Suh M, Hamburg D, Gregory ST, Dahlberg AE, Limbach PA (2005) Extending ribosomal protein identifications to unsequenced bacterial strains using matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 5:4818–4831

    Article  PubMed  CAS  Google Scholar 

  31. Mellmann A, Cloud J, Maier T et al (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954

    Article  PubMed  CAS  Google Scholar 

  32. Carbonnelle E, Beretti J, Cottyn S et al (2007) Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45:2156–2161

    Article  PubMed  CAS  Google Scholar 

  33. Vargha M, Takats Z, Konopka A, Nakatsu CH (2006) Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods 66:399–409

    Article  PubMed  CAS  Google Scholar 

  34. Liu H, Du Z, Wang J, Yang R (2007) Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 73:1899–1907

    Article  PubMed  CAS  Google Scholar 

  35. Arnold RJ, Reilly JP (1998) Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun Mass Spectrom 12:630–636

    Article  PubMed  CAS  Google Scholar 

  36. Bright JJ, Claydon MA, Soufian M, Gordon DB (2002) Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software. J Microbiol Methods 48:127–138

    Article  PubMed  CAS  Google Scholar 

  37. Jarman KH, Cebula ST, Saenz AJ et al (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:1217–1223

    Article  PubMed  CAS  Google Scholar 

  38. Jarman KH, Daly DS, Petersen CE, Saenz AJ, Valentine NB, Wahl KL (1999) Extracting and visualizing matrix-assisted laser desorption/ionization time-of-flight mass spectral fingerprints. Rapid Commun Mass Spectrom 13:1586–1594

    Article  PubMed  CAS  Google Scholar 

  39. Pineda FJ, Lin JS, Fenselau C, Demirev PA (2000) Testing the significance of microorganism identification by mass spectrometry and proteome database search. Anal Chem 72:3739–3744

    Article  PubMed  CAS  Google Scholar 

  40. Harmsen D, Rothgänger J, Frosch M, Albert J (2002) RIDOM: ribosomal differentiation of medical micro-organisms database. Nucleic Acids Res 30:416–417

    Article  PubMed  CAS  Google Scholar 

  41. Friedrichs C, Rodloff AC, Chhatwal GS, Schellenberger W, Eschrich K (2007) Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol 45:2392–2397

    Article  PubMed  CAS  Google Scholar 

  42. Neville SA, Lecordier A, Ziochos H et al (2011) Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 49:2980–2984

    Article  PubMed  Google Scholar 

  43. Benagli C, Rossi V, Dolina M, Tonolla M, Petrini O (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS One 6:e16424

    Article  PubMed  CAS  Google Scholar 

  44. Seng P, Rolain J, Fournier PE, La Scola B, Drancourt M, Raoult D (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 5:1733–1754

    Article  PubMed  CAS  Google Scholar 

  45. Carbonnelle E, Mesquita C, Bille E et al (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44:104–109

    Article  PubMed  CAS  Google Scholar 

  46. Degand N, Carbonnelle E, Dauphin B et al (2008) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46:3361–3367

    Article  PubMed  CAS  Google Scholar 

  47. Vanlaere E, Sergeant K, Dawyndt P et al (2008) Matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J Microbiol Methods 75:279–286

    Article  PubMed  CAS  Google Scholar 

  48. Dieckmann R, Helmuth R, Erhard M, Malorny B (2008) Rapid classification and identification of Salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:7767–7778

    Article  PubMed  CAS  Google Scholar 

  49. Barbuddhe SB, Maier T, Schwarz G et al (2008) Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:5402–5407

    Article  PubMed  CAS  Google Scholar 

  50. Bernardo K, Pakulat N, Macht M et al (2002) Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2:747–753

    Article  PubMed  CAS  Google Scholar 

  51. Ruelle V, El Moualij B, Zorzi W, Ledent P, Pauw ED (2004) Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:2013–2019

    Article  PubMed  CAS  Google Scholar 

  52. Warscheid B, Fenselau C (2004) A targeted proteomics approach to the rapid identification of bacterial cell mixtures by matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 4:2877–2892

    Article  PubMed  CAS  Google Scholar 

  53. Alatoom AA, Cunningham SA, Ihde SM, Mandrekar J, Patel R (2011) Comparison of direct colony method versus extraction method for identification of gram-positive cocci by use of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:2868–2873

    Article  PubMed  Google Scholar 

  54. Ferreira L, Sanchez-Juanes F, Munoz-Bellido JL, Gonzalez-Buitrago JM (2011) Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin Microbiol Infect 17:1007–1012

    Article  PubMed  CAS  Google Scholar 

  55. Cherkaoui A, Hibbs J, Emonet S et al (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175

    Article  PubMed  CAS  Google Scholar 

  56. Camara JE, Hays FA (2007) Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 389:1633–1638

    Article  PubMed  CAS  Google Scholar 

  57. Du Z, Yang R, Guo Z, Song Y, Wang J (2002) Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 74:5487–5491

    Article  PubMed  CAS  Google Scholar 

  58. Edwards-Jones V, Claydon MA, Evason DJ, Walker J, Fox AJ, Gordon DB (2000) Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol 49:295–300

    PubMed  CAS  Google Scholar 

  59. Hrabak J, Walkova R, Studentova V, Chudackova E, Bergerova T (2011) Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3222–3227

    Article  PubMed  CAS  Google Scholar 

  60. Burckhardt I, Zimmermann S (2011) Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 49:3321–3324

    Article  PubMed  CAS  Google Scholar 

  61. Mellmann A, Bimet F, Bizet C et al (2009) High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol 47:3732–3734

    Article  PubMed  CAS  Google Scholar 

  62. Hathout Y, Demirev PA, Ho YP et al (1999) Identification of Bacillus spores by matrix-assisted laser desorption ionization-mass spectrometry. Appl Environ Microbiol 65:4313–4319

    PubMed  CAS  Google Scholar 

  63. Tao L, Yu X, Snyder AP, Li L (2004) Bacterial identification by protein mass mapping combined with an experimentally derived protein mass database. Anal Chem 76:6609–6617

    Article  PubMed  CAS  Google Scholar 

  64. Schubert S, Weinert K, Wagner C et al (2011) Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. J Mol Diagn 13(6):701–706 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  65. Kok J, Thomas LC, Olma T, Chen SCA, Iredell JR (2011) Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization sepsityper and time of flight mass spectrometry. PLoS One 6:e23285

    Article  PubMed  CAS  Google Scholar 

  66. Kroumova V, Gobbato E, Basso E, Mucedola L, Giani T, Fortina G (2011) Direct identification of bacteria in blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new methodological approach. Rapid Commun Mass Spectrom 25:2247–2249

    Article  PubMed  CAS  Google Scholar 

  67. Schmidt V, Jarosch A, Marz P, Sander C, Vacata V, Kalka-Moll W (2011) Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 31(3):311–317 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  68. Romero-Gomez MP, Mingorance J (2011) The effect of the blood culture bottle type in the rate of direct identification from positive cultures by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. J Infect 62:251–253

    Article  PubMed  CAS  Google Scholar 

  69. Moussaoui W, Jaulhac B, Hoffmann A et al (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect 16:1631–1638

    Article  PubMed  CAS  Google Scholar 

  70. Ferreira L, Sanchez-Juanes F, Porras-Guerra I et al (2011) Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 17:546–551

    Article  PubMed  CAS  Google Scholar 

  71. Drancourt M (2010) Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect 16:1620–1625

    Article  PubMed  CAS  Google Scholar 

  72. van Veen SQ, Claas ECJ, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed  CAS  Google Scholar 

  73. Risch M, Radjenovic D, Han JN, Wydler M, Nydegger U, Risch L (2010) Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly 140:w13095

    PubMed  Google Scholar 

  74. Honisch C, Chen Y, Mortimer C et al (2007) Automated comparative sequence analysis by base-specific cleavage and mass spectrometry for nucleic acid-based microbial typing. Proc Natl Acad Sci U S A 104:10649–10654

    Article  PubMed  CAS  Google Scholar 

  75. Ecker DJ, Sampath R, Blyn LB et al (2005) Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. Proc Natl Acad Sci U S A 102:8012–8017

    Article  PubMed  CAS  Google Scholar 

  76. Donohue MJ, Smallwood AW, Pfaller S, Rodgers M, Shoemaker JA (2006) The development of a matrix-assisted laser desorption/ionization mass spectrometry-based method for the protein fingerprinting and identification of Aeromonas species using whole cells. J Microbiol Methods 65:380–389

    Article  PubMed  CAS  Google Scholar 

  77. Grosse-Herrenthey A, Maier T, Gessler F et al (2008) Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe 14:242–249

    Article  PubMed  CAS  Google Scholar 

  78. La Scola B, Fournier P, Raoult D (2011) Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe 17:106–112

    Article  PubMed  CAS  Google Scholar 

  79. Nagy E, Maier T, Urban E, Terhes G, Kostrzewa M (2009) Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 15:796–802

    Article  PubMed  CAS  Google Scholar 

  80. Shah HN, Keys CJ, Schmid O, Gharbia SE (2002) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and proteomics: a new era in anaerobic microbiology. Clin Infect Dis 35:S58–S64

    Article  PubMed  CAS  Google Scholar 

  81. Stingu CS, Rodloff AC, Jentsch H, Schaumann R, Eschrich K (2008) Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiol Immunol 23:372–376

    Article  PubMed  CAS  Google Scholar 

  82. Veloo ACM, Welling GW, Degener JE (2011) The identification of anaerobic bacteria using MALDI-TOF MS. Anaerobe 17:211–212

    Article  PubMed  CAS  Google Scholar 

  83. Veloo AC, Knoester M, Degener JE, Kuijper EJ (2011) Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. Clin Microbiol Infect 17(10):1501–1506 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  84. Veloo ACM, Erhard M, Welker M, Welling GW, Degener JE (2011) Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst Appl Microbiol 34:58–62

    Article  PubMed  CAS  Google Scholar 

  85. Hotta Y, Sato J, Sato H, Hosoda A, Tamura H (2011) Classification of the genus Bacillus based on MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons. J Agric Food Chem 59:5222–5230

    Article  PubMed  CAS  Google Scholar 

  86. Fournier P, Couderc C, Buffet S, Flaudrops C, Raoult D (2009) Rapid and cost-effective identification of Bartonella species using mass spectrometry. J Med Microbiol 58:1154–1159

    Article  PubMed  CAS  Google Scholar 

  87. Ferreira L, Vega Castano S, Sanchez-Juanes F et al (2010) Identification of Brucella by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. PLoS One 5:e14235

    Article  PubMed  CAS  Google Scholar 

  88. Alispahic M, Hummel K, Jandreski-Cvetkovic D et al (2010) Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J Med Microbiol 59:295–301

    Article  PubMed  CAS  Google Scholar 

  89. Bessede E, Solecki O, Sifre E, Labadi L, Megraud F (2011) Identification of Campylobacter species and related organisms by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Clin Microbiol Infect 17(11):1735–1739 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  90. Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, Fagerquist CK (2005) Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 71:6292–6307

    Article  PubMed  CAS  Google Scholar 

  91. Winkler MA, Uher J, Cepa S (1999) Direct analysis and identification of Helicobacter and Campylobacter species by MALDI-TOF mass spectrometry. Anal Chem 71:3416–3419

    Article  PubMed  CAS  Google Scholar 

  92. Wallet F, Loiez C, Decoene C, Courcol R (2011) Rapid identification of Cardiobacterium hominis by MALDI-TOF mass spectrometry during infective endocarditis. Jpn J Infect Dis 64:327–329

    PubMed  Google Scholar 

  93. Zaluga J, Heylen K, Van Hoorde K et al (2011) gyrB sequence analysis and MALDI-TOF MS as identification tools for plant pathogenic Clavibacter. Syst Appl Microbiol 34:400–407

    Article  PubMed  CAS  Google Scholar 

  94. Konrad R, Berger A, Huber I et al (2010) Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill 15:pii: 19702

    Google Scholar 

  95. Hernychova L, Toman R, Ciampor F et al (2008) Detection and identification of Coxiella burnetii based on the mass spectrometric analyses of the extracted proteins. Anal Chem 80:7097–7104

    Article  PubMed  CAS  Google Scholar 

  96. Conway GC, Smole SC, Sarracino DA, Arbeit RD, Leopold PE (2001) Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mol Microbiol Biotechnol 3:103–112

    PubMed  CAS  Google Scholar 

  97. Lynn EC, Chung MC, Tsai WC, Han CC (1999) Identification of Enterobacteriaceae bacteria by direct matrix-assisted laser desorptiom/ionization mass spectrometric analysis of whole cells. Rapid Commun Mass Spectrom 13:2022–2027

    Article  PubMed  CAS  Google Scholar 

  98. Saffert RT, Cunningham SA, Ihde SM, Jobe KEM, Mandrekar J, Patel R (2011) Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli. J Clin Microbiol 49:887–892

    Article  PubMed  Google Scholar 

  99. Alispahic M, Christensen H, Hess C, Razzazi-Fazeli E, Bisgaard M, Hess M (2011) Identification of Gallibacterium species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry evaluated by multilocus sequence analysis. Int J Med Microbiol 301:513–522

    Article  PubMed  CAS  Google Scholar 

  100. Couturier MR, Mehinovic E, Croft AC, Fisher MA (2011) Identification of HACEK clinical isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:1104–1106

    Article  PubMed  Google Scholar 

  101. Haag AM, Taylor SN, Johnston KH, Cole RB (1998) Rapid identification and speciation of Haemophilus bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 33:750–756

    Article  PubMed  CAS  Google Scholar 

  102. Mazzeo MF, Sorrentino A, Gaita M et al (2006) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the discrimination of food-borne microorganisms. Appl Environ Microbiol 72:1180–1189

    Article  PubMed  CAS  Google Scholar 

  103. Gaia V, Casati S, Tonolla M (2011) Rapid identification of Legionella spp. by MALDI-TOF MS based protein mass fingerprinting. Syst Appl Microbiol 34:40–44

    Article  PubMed  CAS  Google Scholar 

  104. He Y, Chang TC, Li H, Shi G, Tang Y (2011) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and database for identification of Legionella species. Can J Microbiol 57:533–538

    Article  PubMed  CAS  Google Scholar 

  105. Moliner C, Ginevra C, Jarraud S et al (2010) Rapid identification of Legionella species by mass spectrometry. J Med Microbiol 59:273–284

    Article  PubMed  CAS  Google Scholar 

  106. Bouakaze C, Keyser C, Gonzalez A et al (2011) Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry-based single nucleotide polymorphism genotyping assay using iPLEX gold technology for identification of Mycobacterium tuberculosis complex species and lineages. J Clin Microbiol 49:3292–3299

    Article  PubMed  CAS  Google Scholar 

  107. Hettick JM, Kashon ML, Slaven JE et al (2006) Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics 6:6416–6425

    Article  PubMed  CAS  Google Scholar 

  108. Lotz A, Ferroni A, Beretti J et al (2010) Rapid identification of mycobacterial whole cells in solid and liquid culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:4481–4486

    Article  PubMed  CAS  Google Scholar 

  109. Pignone M, Greth KM, Cooper J, Emerson D, Tang J (2006) Identification of mycobacteria by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. J Clin Microbiol 44:1963–1970

    Article  PubMed  CAS  Google Scholar 

  110. Saleeb PG, Drake SK, Murray PR, Zelazny AM (2011) Identification of Mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:1790–1794

    Article  PubMed  Google Scholar 

  111. Verroken A, Janssens M, Berhin C et al (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Nocardia species. J Clin Microbiol 48:4015–4021

    Article  PubMed  CAS  Google Scholar 

  112. Jacquier H, Carbonnelle E, Corvec S et al (2011) Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates. Eur J Clin Microbiol Infect Dis 30(12):1579–1586

    Article  PubMed  CAS  Google Scholar 

  113. Rezzonico F, Vogel G, Duffy B, Tonolla M (2010) Application of whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification and clustering analysis of Pantoea species. Appl Environ Microbiol 76:4497–4509

    Article  PubMed  CAS  Google Scholar 

  114. Kolinska R, Drevinek M, Aldova E, Zemlickova H (2010) Identification of Plesiomonas spp.: serological and MALDI-TOF MS methods. Folia Microbiol (Praha) 55:669–672

    Article  CAS  Google Scholar 

  115. Dieckmann R, Malorny B (2011) Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 77:4136–4146

    Article  PubMed  CAS  Google Scholar 

  116. Sparbier K, Weller U, Boogen C, Kostrzewa M (2011) Rapid detection of Salmonella sp. by means of a combination of selective enrichment broth and MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 31(5):767–773 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  117. Bergeron M, Dauwalder O, Gouy M et al (2011) Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 30:343–354

    Article  PubMed  CAS  Google Scholar 

  118. Carpaij N, Willems RJL, Bonten MJM, Fluit AC (2011) Comparison of the identification of coagulase-negative staphylococci by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tuf sequencing. Eur J Clin Microbiol Infect Dis 30:1169–1172

    Article  PubMed  CAS  Google Scholar 

  119. Decristophoris P, Fasola A, Benagli C, Tonolla M, Petrini O (2011) Identification of Staphylococcus intermedius group by MALDI-TOF MS. Syst Appl Microbiol 34:45–51

    Article  PubMed  CAS  Google Scholar 

  120. Dubois D, Leyssene D, Chacornac JP et al (2010) Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:941–945

    Article  PubMed  CAS  Google Scholar 

  121. Dupont C, Sivadon-Tardy V, Bille E et al (2010) Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin Microbiol Infect 16:998–1004

    PubMed  CAS  Google Scholar 

  122. Rajakaruna L, Hallas G, Molenaar L et al (2009) High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF-MS of intact cells. Infect Genet Evol 9:507–513

    Article  PubMed  CAS  Google Scholar 

  123. Vasileuskaya-Schulz Z, Kaiser S, Maier T, Kostrzewa M, Jonas D (2011) Delineation of Stenotrophomonas spp. by multi-locus sequence analysis and MALDI-TOF mass spectrometry. Syst Appl Microbiol 34:35–39

    Article  PubMed  CAS  Google Scholar 

  124. Cherkaoui A, Emonet S, Fernandez J, Schorderet D, Schrenzel J (2011) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of Beta-hemolytic streptococci. J Clin Microbiol 49:3004–3005

    Article  PubMed  Google Scholar 

  125. Hinse D, Vollmer T, Erhard M et al (2011) Differentiation of species of the Streptococcus bovis/equinus-complex by MALDI-TOF Mass Spectrometry in comparison to sodA sequence analyses. Syst Appl Microbiol 34:52–57

    Article  PubMed  CAS  Google Scholar 

  126. Lartigue M, Kostrzewa M, Salloum M et al (2011) Rapid detection of ‘highly virulent’ Group B Streptococcus ST-17 and emerging ST-1 clones by MALDI-TOF mass spectrometry. J Microbiol Methods 86:262–265

    Article  PubMed  CAS  Google Scholar 

  127. Rupf S, Breitung K, Schellenberger W, Merte K, Kneist S, Eschrich K (2005) Differentiation of mutans streptococci by intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Oral Microbiol Immunol 20:267–273

    Article  PubMed  CAS  Google Scholar 

  128. Dieckmann R, Strauch E, Alter T (2010) Rapid identification and characterization of Vibrio species using whole-cell MALDI-TOF mass spectrometry. J Appl Microbiol 109:199–211

    PubMed  CAS  Google Scholar 

  129. Ayyadurai S, Flaudrops C, Raoult D, Drancourt M (2010) Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. BMC Microbiol 10:285

    Article  PubMed  CAS  Google Scholar 

  130. Lasch P, Drevinek M, Nattermann H et al (2010) Characterization of Yersinia using MALDI-TOF mass spectrometry and chemometrics. Anal Chem 82:8464–8475

    Article  PubMed  CAS  Google Scholar 

  131. Stephan R, Cernela N, Ziegler D et al (2011) Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF Mass spectrometry. J Microbiol Methods 87(2):150–153 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  132. Alanio A, Beretti J, Dauphin B et al (2011) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin Microbiol Infect 17:750–755

    Article  PubMed  CAS  Google Scholar 

  133. De Carolis E, Posteraro B, Lass-Florl C et al (2011) Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 18(5):475–484 [Epub ahead of print]

    Article  PubMed  Google Scholar 

  134. Hettick JM, Green BJ, Buskirk AD et al (2008) Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Anal Biochem 380:276–281

    Article  PubMed  CAS  Google Scholar 

  135. Quiles-Melero I, Garcia-Rodriguez J, Gomez-Lopez A, Mingorance J (2011) Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. Eur J Clin Microbiol Infect Dis 31(1):67–71 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  136. McTaggart LR, Lei E, Richardson SE, Hoang L, Fothergill A, Zhang SX (2011) Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3050–3053

    Article  PubMed  Google Scholar 

  137. Kemptner J, Marchetti-Deschmann M, Mach R, Druzhinina IS, Kubicek CP, Allmaier G (2009) Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23:877–884

    Article  PubMed  CAS  Google Scholar 

  138. Erhard M, Hipler U, Burmester A, Brakhage AA, Wostemeyer J (2008) Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp Dermatol 17:356–361

    Article  PubMed  Google Scholar 

  139. Hettick JM, Green BJ, Buskirk AD et al (2008) Discrimination of Penicillium isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Rapid Commun Mass Spectrom 22:2555–2560

    Article  PubMed  CAS  Google Scholar 

  140. Coulibaly O, Marinach-Patrice C, Cassagne C, Piarroux R, Mazier D, Ranque S (2011) Pseudallescheria/Scedosporium complex species identification by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry. Med Mycol 49:621–626

    PubMed  CAS  Google Scholar 

  141. Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M (2011) Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 17:1359–1365

    PubMed  CAS  Google Scholar 

  142. Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL (2011) Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol 49:1614–1616

    Article  PubMed  CAS  Google Scholar 

  143. Kaleta EJ, Clark AE, Cherkaoui A et al (2011) Comparative analysis of PCR-electrospray ionization/mass spectrometry (MS) and MALDI-TOF/MS for the identification of bacteria and yeast from positive blood culture bottles. Clin Chem 57:1057–1067

    Article  PubMed  CAS  Google Scholar 

  144. Marklein G, Josten M, Klanke U et al (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917

    Article  PubMed  CAS  Google Scholar 

  145. Putignani L, Del Chierico F, Onori M et al (2011) MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. Mol Biosyst 7:620–629

    Article  PubMed  CAS  Google Scholar 

  146. Qian J, Cutler JE, Cole RB, Cai Y (2008) MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem 392:439–449

    Article  PubMed  CAS  Google Scholar 

  147. Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 48:3482–3486

    Article  PubMed  CAS  Google Scholar 

  148. Van Herendael BH, Bruynseels P, Bensaid M et al (2011) Validation of a modified algorithm for the identification of yeast isolates using matrix-assisted laser desorption/ionisation ­time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis 31(5):841–848 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mellmann M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mellmann, A., Müthing, J. (2013). MALDI-TOF Mass Spectrometry-Based Microbial Identification. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3970-7_10

Download citation

Publish with us

Policies and ethics