Skip to main content

Advertisement

Log in

Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Staphylococcal species, notably, coagulase-negative staphylococci (CoNS), are frequently misidentified using phenotypic methods. The partial nucleotide sequences of the tuf and gap genes were determined in 47 reference strains to assess their suitability, practicability, and discriminatory power as target molecules for staphylococcal identification. The partial tuf gene sequence was selected and further assessed with a collection of 186 strains, including 35 species and subspecies. Then, to evaluate the efficacy of this genotyping method versus the technology of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), the 186 strains were identified using MALDI-TOF-MS (Axima® Shimadzu) coupled to the SARAMIS® database (AnagnosTec). The French National Reference Center for Staphylococci identification method was used as a reference. One hundred and eighty-four strains (98.9%) were correctly identified by tuf gene sequencing. Only one strain was misidentified and one was unidentified. MALDI-TOF-MS identified correctly 138 isolates (74.2%). Four strains were misidentified, 39 were unidentified, five were identified at the group (hominis/warneri) level, and one strain was identified at the genus level. These results confirm the value of MALDI-TOF-MS identification for common species in clinical laboratory practice and the value of the partial tuf gene sequence for the identification of all staphylococcal species as required in a reference laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al Masalma M, Raoult D, Roux V (2010) Staphylococcus massiliensis sp. nov., isolated from a human brain abscess. Int J Syst Evol Microbiol 60:1066–1072

    Article  PubMed  Google Scholar 

  2. Hauschild T, Stepanović S, Zakrzewska-Czerwińska J (2010) Staphylococcus stepanovicii sp. nov., a novel novobiocin-resistant oxidase-positive staphylococcal species isolated from wild small mammals. Syst Appl Microbiol 33:183–187

    Article  CAS  PubMed  Google Scholar 

  3. Nováková D, Pantůcek R, Hubálek Z, Falsen E, Busse HJ, Schumann P, Sedlácek I (2010) Staphylococcus microti sp. nov., isolated from the common vole (Microtus arvalis). Int J Syst Evol Microbiol 60:566–573

    Article  PubMed  Google Scholar 

  4. Riesen A, Perreten V (2010) Staphylococcus rostri sp. nov., a haemolytic bacterium isolated from the noses of healthy pigs. Int J Syst Evol Microbiol 60:2042–2047

    Article  CAS  PubMed  Google Scholar 

  5. Supré K, De Vliegher S, Cleenwerck I, Engelbeen K, Van Trappen S, Piepers S, Sampimon OC, Zadoks RN, De Vos P, Haesebrouck F (2010) Staphylococcus devriesei sp. nov., isolated from teat apices and milk of dairy cows. Int J Syst Evol Microbiol [Epub ahead of print]

  6. Corbiere Morot-Bizot S, Leroy S, Talon R (2007) Monitoring of staphylococcal starters in two French processing plants manufacturing dry fermented sausages. J Appl Microbiol 102:238–244

    Article  CAS  PubMed  Google Scholar 

  7. von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685

    Article  Google Scholar 

  8. Biavasco F, Vignaroli C, Varaldo PE (2000) Glycopeptide resistance in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 19:403–417

    Article  CAS  PubMed  Google Scholar 

  9. Piette A, Verschraegen G (2009) Role of coagulase-negative staphylococci in human disease. Vet Microbiol 134:45–54

    Article  CAS  PubMed  Google Scholar 

  10. Heikens E, Fleer A, Paauw A, Florijn A, Fluit AC (2005) Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 43:2286–2290

    Article  CAS  PubMed  Google Scholar 

  11. Delmas J, Chacornac JP, Robin F, Giammarinaro P, Talon R, Bonnet R (2008) Evaluation of the Vitek 2 system with a variety of Staphylococcus species. J Clin Microbiol 46:311–313

    Article  PubMed  Google Scholar 

  12. Kim M, Heo SR, Choi SH, Kwon H, Park JS, Seong MW, Lee DH, Park KU, Song J, Kim EC (2008) Comparison of the MicroScan, VITEK 2, and Crystal GP with 16S rRNA sequencing and MicroSeq 500 v2.0 analysis for coagulase-negative Staphylococci. BMC Microbiol 8:233

    Article  PubMed  Google Scholar 

  13. Layer F, Ghebremedhin B, Moder KA, König W, König B (2006) Comparative study using various methods for identification of Staphylococcus species in clinical specimens. J Clin Microbiol 44:2824–2830

    Article  CAS  PubMed  Google Scholar 

  14. Carbonnelle E, Beretti JL, Cottyn S, Quesne G, Berche P, Nassif X, Ferroni A (2007) Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45:2156–2161

    Article  CAS  PubMed  Google Scholar 

  15. Dubois D, Leyssene D, Chacornac JP, Kostrzewa M, Schmit PO, Talon R, Bonnet R, Delmas J (2010) Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:941–945

    Article  CAS  PubMed  Google Scholar 

  16. Dupont C, Sivadon-Tardy V, Bille E, Dauphin B, Beretti JL, Alvarez AS, Degand N, Ferroni A, Rottman M, Herrmann JL, Nassif X, Ronco E, Carbonnelle E (2010) Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin Microbiol Infect 16:998–1004

    CAS  PubMed  Google Scholar 

  17. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  PubMed  Google Scholar 

  18. Spanu T, De Carolis E, Fiori B, Sanguinetti M, D’Inzeo T, Fadda G, Posteraro B (2010) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of bloodstream infection staphylococcal isolates. Clin Microbiol Infect [Epub ahead of print]

  19. Becker K, Harmsen D, Mellmann A, Meier C, Schumann P, Peters G, von Eiff C (2004) Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol 42:4988–4995

    Article  CAS  PubMed  Google Scholar 

  20. Gribaldo S, Cookson B, Saunders N, Marples R, Stanley J (1997) Rapid identification by specific PCR of coagulase-negative staphylococcal species important in hospital infection. J Med Microbiol 46:45–53

    Article  CAS  PubMed  Google Scholar 

  21. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW (1996) HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol 34:818–823

    CAS  PubMed  Google Scholar 

  22. Kwok AY, Su SC, Reynolds RP, Bay SJ, Av-Gay Y, Dovichi NJ, Chow AW (1999) Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol 49(Pt 3):1181–1192

    Article  CAS  PubMed  Google Scholar 

  23. Poyart C, Quesne G, Boumaila C, Trieu-Cuot P (2001) Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 39:4296–4301

    Article  CAS  PubMed  Google Scholar 

  24. Drancourt M, Raoult D (2002) rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40:1333–1338

    Article  CAS  PubMed  Google Scholar 

  25. Mellmann A, Becker K, von Eiff C, Keckevoet U, Schumann P, Harmsen D (2006) Sequencing and staphylococci identification. Emerg Infect Dis 12:333–336

    CAS  PubMed  Google Scholar 

  26. Vannuffel P, Heusterspreute M, Bouyer M, Vandercam B, Philippe M, Gala JL (1999) Molecular characterization of femA from Staphylococcus hominis and Staphylococcus saprophyticus, and femA-based discrimination of staphylococcal species. Res Microbiol 150:129–141

    Article  CAS  PubMed  Google Scholar 

  27. Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, Bergeron MG (2001) Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 39:2541–2547

    Article  CAS  PubMed  Google Scholar 

  28. Layer F, Ghebremedhin B, König W, König B (2007) Differentiation of Staphylococcus spp. by terminal-restriction fragment length polymorphism analysis of glyceraldehyde-3-phosphate dehydrogenase-encoding gene. J Microbiol Methods 70:542–549

    Article  CAS  PubMed  Google Scholar 

  29. Yugueros J, Temprano A, Berzal B, Sánchez M, Hernanz C, Luengo JM, Naharro G (2000) Glyceraldehyde-3-phosphate dehydrogenase-encoding gene as a useful taxonomic tool for Staphylococcus spp. J Clin Microbiol 38:4351–4355

    CAS  PubMed  Google Scholar 

  30. Yugueros J, Temprano A, Sánchez M, Luengo JM, Naharro G (2001) Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism of gap gene. J Clin Microbiol 39:3693–3695

    Article  CAS  PubMed  Google Scholar 

  31. Ghebremedhin B, Layer F, König W, König B (2008) Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46:1019–1025

    Article  CAS  PubMed  Google Scholar 

  32. Schmitt E, Guillon JM, Meinnel T, Mechulam Y, Dardel F, Blanquet S (1996) Molecular recognition governing the initiation of translation in Escherichia coli. A review. Biochimie 78:543–554

    Article  CAS  PubMed  Google Scholar 

  33. Ke D, Picard FJ, Martineau F, Ménard C, Roy PH, Ouellette M, Bergeron MG (1999) Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37:3497–3503

    CAS  PubMed  Google Scholar 

  34. Mignard S, Flandrois JP (2007) Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J Med Microbiol 56:1033–1041

    Article  CAS  PubMed  Google Scholar 

  35. Modun BJ, Cockayne A, Finch R, Williams P (1998) The Staphylococcus aureus and Staphylococcus epidermidis transferrin-binding proteins are expressed in vivo during infection. Microbiology 144(Pt 4):1005–1012

    Article  CAS  PubMed  Google Scholar 

  36. Mendoza M, Meugnier H, Bes M, Etienne J, Freney J (1998) Identification of Staphylococcus species by 16S–23S rDNA intergenic spacer PCR analysis. Int J Syst Bacteriol 48(Pt 3):1049–1055

    Article  CAS  PubMed  Google Scholar 

  37. Regnault B, Grimont F, Grimont PA (1997) Universal ribotyping method using a chemically labelled oligonucleotide probe mixture. Res Microbiol 148:649–659

    Article  CAS  PubMed  Google Scholar 

  38. Schleifer KH, Meyer SA, Rupprecht M (1979) Relatedness among coagulase-negative staphylococci: deoxyribonucleic acid reassociation and comparative immunological studies. Arch Microbiol 122:93–101

    Article  CAS  PubMed  Google Scholar 

  39. Vandenesch F, Perrier-Gros-Claude JD, Bes M, Fuhrmann C, Delorme V, Mouren C, Etienne J (1995) Staphylococcus pasteuri-specific oligonucleotide probes derived from a random amplified DNA fragment. FEMS Microbiol Lett 132:147–152

    Article  CAS  PubMed  Google Scholar 

  40. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70:631–641

    Article  CAS  PubMed  Google Scholar 

  41. Bannerman TL, Kloos WE (1991) Staphylococcus capitis subsp. ureolyticus subsp. nov. from human skin. Int J Syst Bacteriol 41:144–147

    Article  CAS  PubMed  Google Scholar 

  42. Igimi S, Takahashi E, Mitsuoka T (1990) Staphylococcus schleiferi subsp. coagulans subsp. nov., isolated from the external auditory meatus of dogs with external ear otitis. Int J Syst Bacteriol 40:409–411

    Article  CAS  PubMed  Google Scholar 

  43. Kloos WE, George CG, Olgiate JS, Van Pelt L, McKinnon ML, Zimmer BL, Muller E, Weinstein MP, Mirrett S (1998) Staphylococcus hominis subsp. novobiosepticus subsp. nov., a novel trehalose- and N-acetyl-D-glucosamine-negative, novobiocin- and multiple-antibiotic-resistant subspecies isolated from human blood cultures. Int J Syst Bacteriol 48(Pt 3):799–812

    Article  CAS  PubMed  Google Scholar 

  44. Hájek V, Meugnier H, Bes M, Brun Y, Fiedler F, Chmela Z, Lasne Y, Fleurette J, Freney J (1996) Staphylococcus saprophyticus subsp. bovis subsp. nov., isolated from bovine nostrils. Int J Syst Bacteriol 46:792–796

    Article  PubMed  Google Scholar 

  45. Kloos WE, Ballard DN, Webster JA, Hubner RJ, Tomasz A, Couto I, Sloan GL, Dehart HP, Fiedler F, Schubert K, de Lencastre H, Sanches IS, Heath HE, Leblanc PA, Ljungh A (1997) Ribotype delineation and description of Staphylococcus sciuri subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int J Syst Bacteriol 47:313–323

    Article  CAS  PubMed  Google Scholar 

  46. Marsou R, Bes M, Boudouma M, Brun Y, Meugnier H, Freney J, Vandenesch F, Etienne J (1999) Distribution of Staphylococcus sciuri subspecies among human clinical specimens, and profile of antibiotic resistance. Res Microbiol 150:531–541

    Article  CAS  PubMed  Google Scholar 

  47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  48. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  49. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K (2007) Reclassification of phenotypically identified Staphylococcus intermedius strains. J Clin Microbiol 45:2770–2778

    Article  CAS  PubMed  Google Scholar 

  50. Kwok AY, Chow AW (2003) Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Int J Syst Evol Microbiol 53:87–92

    Article  CAS  PubMed  Google Scholar 

  51. Shah MM, Iihara H, Noda M, Song SX, Nhung PH, Ohkusu K, Kawamura Y, Ezaki T (2007) dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int J Syst Evol Microbiol 57:25–30

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi T, Satoh I, Kikuchi N (1999) Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol 49(Pt 2):725–728

    Article  CAS  PubMed  Google Scholar 

  53. Probst AJ, Hertel C, Richter L, Wassill L, Ludwig W, Hammes WP (1998) Staphylococcus condimenti sp. nov., from soy sauce mash, and Staphylococcus carnosus (Schleifer and Fischer 1982) subsp. utilis subsp. nov. Int J Syst Bacteriol 48(Pt 3):651–658

    Article  CAS  PubMed  Google Scholar 

  54. Bannoehr J, Ben Zakour NL, Waller AS, Guardabassi L, Thoday KL, van den Broek AH, Fitzgerald JR (2007) Population genetic structure of the Staphylococcus intermedius group: insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol 189:8685–8692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christine Gardon, Christine Courtier, Céline Spinelli, and Caroline Bouveyron for their technical assistance, Christian Curel, Michel Roch, and Nader Baïda (I2A company) for generously providing us with the Shimadzu Axima® mass spectrometer, the SARAMIS® identification database, and the SirWeb MALDI-TOF software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Boisset.

Additional information

François Vandenesch and Sandrine Boisset share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeron, M., Dauwalder, O., Gouy, M. et al. Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 30, 343–354 (2011). https://doi.org/10.1007/s10096-010-1091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-1091-z

Keywords

Navigation