Skip to main content
Log in

MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is demonstrated to be a potentially useful tool for the rapid identification of yeasts, the grouping of Candida albicans strains, and the monitoring of germ tube-specific markers. Co-crystallized with sinapinic acid as the MALDI matrix, intact yeast cells yielded a sufficient number of medium-sized ions (4–15 kDa) in MALDI mass spectra to provide “mass signatures” that were diagnostic of strain type. For most isolates, the mass signatures were affected by the growth medium, length of incubation and the cell preparation method. While the overall past success of this methodology for fungal cells has been relatively low compared to its application to bacteria, fixing the yeast cells in 50% methanol inactivated the cells, reduced cell aggregation in aqueous suspension solution, and more importantly, it significantly improved the mass signature quality. This simple but critical advance in sample treatment improved mass spectrometric signal-to-noise ratios and allowed the identification of yeasts by a mass signature approach. Under optimized conditions, Candida species (C. albicans, C. glabrata, C. krusei, C. kefyr), Aspergillus species (A. terreus, A. fumigatus, A. syndowii) and other yeast genera (Cryptococcus neoformans, Saccharomyces cerevisiae and a Rhodotorula sp.) could be distinguished. Within the C. albicans species, several common ions in the m/z 5,000–10,000 range were apparent in the mass spectra of all tested strains. In addition to shared ions, the mass spectra of individual C. albicans strains permitted grouping of the strains. Principal component analysis (PCA) was employed to confirm spectral reproducibility and C. albicans strain grouping by mass signatures. Finally, C. albicans germ tubes produced MALDI-TOF mass signatures that differed from yeast forms of this species. This is a rapid, sensitive and simple method for identifying yeasts, grouping strains and following the morphogenesis of C. albicans.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Enache-Angoulvant A, Hennequin C (2005) Clin Infect Dis 41:1559–1568

    Article  Google Scholar 

  2. Hazen KC (1995) Clin Microbiol Rev 8:462–478

    CAS  Google Scholar 

  3. Perfect JR, Casadevall A (2002) Infect Dis Clin North Am 16:837–874

    Article  Google Scholar 

  4. Ruhnke M (2006) Curr Drug Targets 7:495–504

    Article  CAS  Google Scholar 

  5. Pincus DH, Orenga S, Chatellier S (2007) Medical Mycol 45:97–121

    Article  CAS  Google Scholar 

  6. Shepard JR, Addison RM, Alexander BD, Della-Latta P, Gherna M, Haase G, Hall G, Johnson JK, Merz WG, Peltroche-Llacsahuanga H, Stender H, Venezia RA, Wilson D, Procop GW, Wu F, Fiandaca MJ (2007) J Clin Microbiol (in press)

  7. Timmins EM, Howell SA, Alsberg BK, Noble WC, Goodacre R (1998) J Clin Microbiol 36:367–374

    CAS  Google Scholar 

  8. Himmelreich U, Somorjai RL, Dolenko B, Lee OC, Daniel HM, Murray R, Mountford CE, Sorrell TC (2003) Appl Environ Microbiol 69:4566–4574

    Article  CAS  Google Scholar 

  9. Himmelreich U, Somorjai RL, Dolenko B, Daniel HM, Sorrell TC (2005) FEMS Microbiol Lett 251:327–332

    Article  CAS  Google Scholar 

  10. Ibelings MS, Maquelin K, Endtz HP, Bruining HA, Puppels GJ (2005) Clin Microbiol Infect 11:353–358

    Article  CAS  Google Scholar 

  11. Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA, Puppels GJ (2002) J Clin Microbiol 40:594–600

    Article  CAS  Google Scholar 

  12. Tintelnot K, Haase G, Seibold M, Bergmann F, Staemmler M, Franz T, Naumann D (2000) J Clin Microbiol 38:1599–1608

    CAS  Google Scholar 

  13. Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, Puppels GJ (2000) Anal Chem 72:12–19

    Article  CAS  Google Scholar 

  14. Fenselau C, Demirev PA (2001) Mass Spectrom Rev 20:157–171

    Article  CAS  Google Scholar 

  15. Gantt SL, Valentine NB, Saenz AJ, Kingsley MT, Wahl KL (1999) J Am Soc Mass Spectrom 10:1131–1137

    Article  CAS  Google Scholar 

  16. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO (1996) Rapid Commun Mass Spectrom 10:1227–1232

    Article  CAS  Google Scholar 

  17. Krishnamurthy T, Ross PL, Rajamani U (1996) Rapid Commun Mass Spectrom 10:883–888

    Article  CAS  Google Scholar 

  18. Evason DJ, Claydon MA, Gordon DB (2001) J Am Soc Mass Spectrom 12:49–54

    Article  CAS  Google Scholar 

  19. Haag AM, Taylor SN, Johnston KH, Cole RB (1998) J Mass Spectrom 33:750–756

    Article  CAS  Google Scholar 

  20. Hathout Y, Demirev PA, Ho YP, Bundy JL, Ryzhov V, Sapp L, Stutler J, Jackman J, Fenselau C (1999) Appl Environ Microbiol 65:4313–4319

    CAS  Google Scholar 

  21. Horneffer V, Haverkamp J, Janssen HG, Notz R (2004) J Am Soc Mass Spectrom 15:1444–1454

    Article  CAS  Google Scholar 

  22. Lay JO, Holland RD (2000) Methods Mol Biol 146:461–487

    CAS  Google Scholar 

  23. Madonna AJ, Basile F, Furlong E, Voorhees KJ (2001) Rapid Commun Mass Spectrom 15:1068–1074

    Article  CAS  Google Scholar 

  24. Marvin-Guy LF, Parche S, Wagniere S, Moulin J, Zink R, Kussmann M, Fay LB (2004) J Am Soc Mass Spectrom 15:1222–1227

    Article  CAS  Google Scholar 

  25. Ryzhov V, Hathout Y, Fenselau C (2000) Appl Environ Microbiol 66:3828–3834

    Article  CAS  Google Scholar 

  26. Shaw EI, Moura H, Woolfitt AR, Ospina M, Thompson HA, Barr JR (2004) Anal Chem 76:4017–4022

    Article  CAS  Google Scholar 

  27. Vargha M, Takáts Z, Konopka A, Nakatsu CH (2006) J Microbiol Methods 66:399–409

    Article  CAS  Google Scholar 

  28. Williams TL, Andrzejewski D, Lay JO, Musser SM (2003) J Am Soc Mass Spectrom 14:342–351

    Article  CAS  Google Scholar 

  29. Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL, Schauki D, Jackman J, Nelson CP, White E (2005) J Am Soc Mass Spectrom 16:456–462

    Article  CAS  Google Scholar 

  30. Maier T, Klepel S, Renner U, Kostrzewa M (2006) Nat Method 3. doi:10.1038/nmeth1870

  31. Amiri-Eliasi BJ, Fenselau C (2001) Anal Chem 73:5228–5231

    Article  CAS  Google Scholar 

  32. Chen HY, Chen YC (2005) Rapid Commun Mass Spectrom 19:3564–3568

    Article  CAS  Google Scholar 

  33. Jackson KA, Edwards-Jones V, Sutton CW, Fox AJ (2005) J Microbiol Methods 62:273–284

    Article  CAS  Google Scholar 

  34. Li TY, Liu BH, Chen YC (2000) Rapid Commun Mass Spectrom 14:2393–2400

    Article  CAS  Google Scholar 

  35. Valentine NB, Wahl JH, Kingsley MT, Wahl KL (2002) Rapid Commun Mass Spectrom 16:1352–1357

    Article  CAS  Google Scholar 

  36. Whelan WL, Delga JM, Wadsworth E, Walsh TJ, Kwonchung KJ, Calderone R, Lipke PN (1990) Infect Immun 58:1552–1557

    CAS  Google Scholar 

  37. Han YM, Cutler JE (1995) Infect Immun 63:2714–2719

    CAS  Google Scholar 

  38. Qian QF, Jutila MA, Van Rooijen N, Cutler JE (1994) J Immunol 152:5000–5008

    CAS  Google Scholar 

  39. Benson ES, Filler SC, Berman J (2002) Eukaryot Cell 1:787–798

    Article  Google Scholar 

  40. Palmer GE, Kelly MN, Sturtevant JE (2005) Eukaryot Cell 4:1677–1686

    Article  CAS  Google Scholar 

  41. Xiang F, Beavis RC (1994) Rapid Commun Mass Spectrom 8:199–204

    Article  Google Scholar 

  42. Vorm O, Roepstorff P, Mann M (1994) Anal Chem 66:3281–3287

    Article  CAS  Google Scholar 

  43. Karas M, Hillenkamp F (1988) Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  44. Harrington PD, Street TE, Voorhees KJ, Dibrozolo FR, Odom RW (1989) Anal Chem 61:715–719

    Article  CAS  Google Scholar 

  45. Harrington PD, Voorhees KJ (1990) Anal Chem 62:729–734

    Article  CAS  Google Scholar 

  46. Sherburn RE, Jenkins RO (2003) Spectroscopy 17:31–38

    CAS  Google Scholar 

  47. Arnold RJ, Reilly JP (1998) Rapid Commun Mass Spectrom 12:630–636

    Article  CAS  Google Scholar 

  48. Saenz AJ, Petersen CE, Valentine NB, Gantt SL, Jarman KH, Kingsley MT, Wahl KL (1999) Rapid Commun Mass Spectrom 13:1580–1585

    Article  CAS  Google Scholar 

  49. Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP (1998) Microbiol Mol Biol Rev 62:130–180

    CAS  Google Scholar 

  50. Farmer TB, Caprioli RM (1998) J Mass Spectrom 33:697–704

    Article  CAS  Google Scholar 

  51. Woods AS, Buchsbaum JC, Worrall TA, Berg JM, Cotter RJ (1995) Anal Chem 67:4462–4465

    Article  CAS  Google Scholar 

  52. Strupat K, Sagi D, Bonisch H, Schafer G, Peter-Katalinic J (2000) Analyst 125:653–657

    Article  Google Scholar 

  53. Cai Y, Jiang YJ, Cole RB (2003) Anal Chem 75:1638–1644

    Article  CAS  Google Scholar 

  54. Beavis RC, Chait BT (1989) Rapid Commun Mass Spectrom 3:432–435

    Google Scholar 

  55. Beavis RC, Chait BT (1990) Proc Natl Acad Sci USA 87:6873–6877

    Article  CAS  Google Scholar 

  56. Gluckmann M, Pfenninger A, Kruger R, Thierolf M, Karas M, Horneffer V, Hillenkamp F, Strupat K (2001) Int J Mass Spectrom 210:121–132

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Patrick Lambert and Dr. Miriam Corti for their help in yeast sample preparations. Support for the research was provided by the Research Institute for Children, Children’s Hospital, New Orleans, and the Louisiana Board of Regents through HEF (2001-06)-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Cutler, J.E., Cole, R.B. et al. MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem 392, 439–449 (2008). https://doi.org/10.1007/s00216-008-2288-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2288-1

Keywords

Navigation