Skip to main content

Scion Breeding for Resistance to Biotic Stresses

  • Chapter
  • First Online:
The Grape Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The majority of grapevine cultivars used for wine, table grape and dried-fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavour characteristics. However, this species has little or no genetic resistance against the major pests and pathogens that attack above-ground parts of the grapevine including the trunk, canopy and bunches. As a result, grape production is highly dependent on the frequent use of fungicides and pesticides, which has significant implications for the economic and environmental sustainability of grape production. This chapter will summarize our current knowledge of the different resistance loci/genes that have been identified in wild grapevine species that could potentially be used to develop new grapevine cultivars with enhanced genetic resistance by marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204:273–281

    Article  CAS  PubMed  Google Scholar 

  • Agurto M, Schlechter RO, Armijo G, Solano E, Serrano C, Contreras RA, Zuniga GE, Arce-Johnson P (2017) RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator). Front Plant Sci 8:758

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso-Villaverde V, Boso S, Luis Santiago J, Gago P, Martínez M-C (2008) Relationship between susceptibility to Botrytis bunch rot and grape cluster morphology in the Vitis vinifera L. cultivar Albariño. Int J Fruit Sci 8:251–265

    Article  Google Scholar 

  • Alonso-Villaverde V, Voinesco F, Viret O, Spring JL, Gindro K (2011) The effectiveness of stilbenes in resistant Vitaceae: ultrastructural and biochemical events during Plasmopara viticola infection process. Plant Physiol Biochem 49:265–274

    Article  CAS  PubMed  Google Scholar 

  • Ambers CP (2013) A historical hypothesis on the origin of the Norton grape. J Wine Res 24:85–95

    Article  Google Scholar 

  • Anderson C, Choisne N, Adam-Blondon A-F, Dry IB (2011) Positional cloning of disease resistance genes in grapevine. In: Kole C (ed) Genetics, genomics, and breeding of grapes. CRC Press, Versailles, pp 186–210

    Chapter  Google Scholar 

  • Antonielli L, Compant S, Strauss J, Sessitsch A, Berger H (2014) Draft genome sequence of Phaeomoniella chlamydospora strain RR-HG1, a grapevine trunk disease (esca)-related member of the Ascomycota. Genome Announc 2:e00098-00014

    Article  Google Scholar 

  • Barba P, Lillis J, Luce RS, Travadon R, Osier M, Baumgartner K, Wilcox WF, Reisch BI, Cadle-Davidson L (2018) Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines. Theor Appl Genet 131:1173–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett HC (1953) A survey of black rot resistance of the foliage of wild grape species. Proc Am Soc Hortic Sci 62:319–322

    Google Scholar 

  • Becker T, Knoche M (2012) Water induces microcracks in the grape berry cuticle. Vitis 51:141–142

    Google Scholar 

  • Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176

    Article  PubMed  Google Scholar 

  • Berlanas C, Songy A, Clément C, Fontaine F, Gramaje D (2017) Variation amongst ‘Tempranillo’ clones in susceptibility to neofusicoccum parvum. Phytopathol Meditter 56:545

    Google Scholar 

  • Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, Spagnolo A, Clément C, Fontaine F (2013) Grapevine trunk diseases: complex and still poorly understood. Plant Pathol 62:243–265

    Article  Google Scholar 

  • Billones-Baaijens R, Jones EE, Ridgway HJ, Jaspers MV (2014) Susceptiblity of common rootstock and scion varieties of grapevines to Botryosphaeriaceae species. Australas Plant Pathol 43:25–31

    Article  Google Scholar 

  • Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Ulate B, Rolshausen PE, Cantu D (2013a) Draft genome sequence of Neofusicoccum parvum isolate UCR-NP2, a fungal vascular pathogen associated with grapevine cankers. Genome Announc 1:e00339-00313

    Google Scholar 

  • Blanco-Ulate B, Rolshausen PE, Cantu D (2013b) Draft genome sequence of the ascomycete Phaeoacremonium aleophilum strain UCR-PA7, a causal agent of the esca disease complex in grapevines. Genome Announc 1:e00390-00313

    Google Scholar 

  • Blanco-Ulate B, Rolshausen PE, Cantu D (2013c) Draft genome sequence of the grapevine dieback fungus Eutypa lata UCR-EL1. Genome Announc 1:e00228-00213

    Google Scholar 

  • Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Ruhl EH, Mestre P, Merdinoglu D (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53

    Article  PubMed  Google Scholar 

  • Borve J, Sekse L, Stensvand A (2000) Cuticular fractures promote postharvest fruit rot in sweet cherries. Plant Dis 84:1180–1184

    Article  PubMed  Google Scholar 

  • Bouquet A (1986) Introduction dans l’espe`ce Vitis vinifera L. d’uncaracte`re de re´sistance a` l’oidium (Uncinula necator Schw. Burr.) issu de l’espe`ce Muscadinia rotundifolia (Michx.) Small. Vignevini 12:141–146

    Google Scholar 

  • Brewer MT, Milgroom MG (2010) Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evolut Biol 10:268

    Article  CAS  Google Scholar 

  • Brunetto G, de Melo GWB, Terzano R, Del Buono D, Astolfi S, Tomasi N, Pii Y, Mimmo T, Cesco S (2016) Copper accumulation in vineyard soils: rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 162:293–307

    Article  CAS  PubMed  Google Scholar 

  • Butault J-P, Dedryver C-A, Gary C, Guichard L, Jacquet F, Meynard JM, Nicot P, Pitrat M, Reau R, Sauphanor B, Savini I, Volay T (2010) Synthèse du rapport d’étude Écophyto R&D: quelles voies pour réduire l’usage des pesticides? INRA Editions 978-2-7380-1272-2

    Google Scholar 

  • Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584

    Article  PubMed  Google Scholar 

  • Cadle-Davidson L, Chicoine DR, Consolie NH (2011) Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis 95:202–211

    Article  PubMed  Google Scholar 

  • Carter MV (1991) The status of Eutypa lata as a pathogen. C.A.B., Wallingford

    Google Scholar 

  • Caudwell A (1990) Epidemiology and characterization of Flavescence doree (Fd) and other grapevine yellows. Agronomie 10:655–663

    Article  Google Scholar 

  • Cipriani G, Foria S, Monte C, Testolin R, Di Gaspero G (2018) Pyramidizing resistance genes in grape: a breeding program for the selection of ‘elite’ cultivars. Paper presented at the XIIth international grapevine breeding and genetics conference, Bordeaux, France

    Google Scholar 

  • Clayton CN, Ridings WH (1970) Grape Rust, Physopella ampelopsidis, on Vitis rotundifolia in North Carolina. Phytopathology 60:1022

    Article  Google Scholar 

  • Colcol JF, Baudoin AB (2016) Sensitivity of Erysiphe necator and Plasmopara viticola in Virginia to QoI fungicides, Boscalid, Quinoxyfen, Thiophanate Methyl, and Mefenoxam. Plant Dis 100:337–344

    Article  CAS  PubMed  Google Scholar 

  • Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovacs L, Morgante M, Testolin R, Di Gaspero G (2009) The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genet 10:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Correa J, Mamani M, Munoz-Espinoza C, Laborie D, Munoz C, Pinto M, Hinrichsen P (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162

    Article  CAS  PubMed  Google Scholar 

  • Crall JM, Stover LH (1957) The significance of Pierce’s disease in the decline of bunch grapes in Florida. Phytopathology 47:518

    Google Scholar 

  • Creasy G, Creasy LL (2009) Chapter 9—Grapevine pests, diseases and disorders. In: Grapes crop production science in horticulture. CABI Publishing, UK, pp 229–296

    Google Scholar 

  • Dal Bosco D, Sinski I, Ritschel PS, Camargo UA, Fajardo TVM, Harakava R, Quecini V (2018) Expression of disease resistance in genetically modified grapevines correlates with the contents of viral sequences in the T-DNA and global genome methylation. Transgenic Res 27:379–396

    Article  CAS  Google Scholar 

  • Dalbó MA, Weeden NF, Reisch BI (2000) QTL analysis of disease resistance in interspecific hybrid grapes. Acta Hortic 528:215–219

    Google Scholar 

  • Daykin ME, Milholland RD (1984) Histopathology of Ripe Rot caused by Colletotrichum gloeosporioides on Muscadine grape. Phytopathology 74:1339–1341

    Article  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 442:389–466

    Article  Google Scholar 

  • Delmotte F, Mestre P, Schneider C, Kassemeyer HH, Kozma P, Richart-Cervera S, Rouxel M, Deliere L (2014) Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew. Infect Genet Evol 27:500–508

    Article  PubMed  Google Scholar 

  • Dermastia M, Bertaccini A, Constable F, Mehle N (2017) Grapevine yellow diseases and their phytoplasma agents: biology and Detection. Springer briefs in agriculture. Springer, Cham, pp 1–95

    Book  Google Scholar 

  • Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R, Kozma P, Lacombe T, Gambetta G, Zvyagin A, Cindric P, Kovacs L, Morgante M, Testolin R (2012) Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet 124:277–286

    Article  PubMed  Google Scholar 

  • Divilov K, Barba P, Cadle-Davidson L, Reisch BI (2018) Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet 131:1133–1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Dry IB, Thomas MR (2015) Disease resistance: fast-tracking grape breeding for disease resistance. Wine Vitic J 30:52–55

    Google Scholar 

  • Duan C-G, Wang C-H, Guo H-S (2012) Application of RNA silencing to plant disease resistance. Silence 3:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124

    CAS  Google Scholar 

  • Elmer PAG, Michailides TJ (2004) Epidemiology of Botrytis cinerea in orchard and vine crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 243–272

    Google Scholar 

  • Esteve-Turrillas FA, Agullo C, Abad-Somovilla A, Mercader JV, Abad-Fuentes A (2016) Fungicide multiresidue monitoring in international wines by immunoassays. Food Chem 196:1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Eveillard S, Jollard C, Labroussaa F, Khalil D, Perrin M, Desque D, Salar P, Razan F, Hevin C, Bordenave L, Foissac X, Masson JE, Malembic-Maher S (2016) Contrasting susceptibilities to Flavescence doree in Vitis vinifera, rootstocks and wild Vitis species. Front Plant Sci 7:1762

    Article  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Jermakow AM, Torregrosa L, Panstruga R, Dry IB (2008) Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct Plant Biol 35:1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Feechan A, Kabbara S, Dry IB (2011) Mechanisms of powdery mildew resistance in the Vitaceae family. Mol Plant Path 12:263–274

    Article  Google Scholar 

  • Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661–674

    Article  CAS  PubMed  Google Scholar 

  • Feechan A, Kocsis M, Riaz S, Zhang W, Gadoury DM, Walker MA, Dry IB, Reisch B, Cadle-Davidson L (2015) Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race specificity. Phytopathology 105:1104–1113

    Article  PubMed  CAS  Google Scholar 

  • Feliciano AJ, Eskalen A, Gubler WD (2004) Differential susceptibility of three grapevine cultivars to Phaeoacremonium aleophilum and Phaeomoniella chlamydospora in California. Phytopathol Mediterr 43:66–69

    Google Scholar 

  • Finkers R, van den Berg P, van Berloo R, ten Have A, van Heusden AW, van Kan JAL, Lindhout P (2007) Three QTLs for Botrytis cinerea resistance in tomato. Theor Appl Genet 114:585–593

    Article  PubMed  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

    Article  CAS  PubMed  Google Scholar 

  • Foria S, Magris G, Morgante M, Di Gaspero G (2018) The genetic background modulates the intensity of Rpv3-dependent downy mildew resistance in grapevine. Plant Breed 137:220–228

    Article  CAS  Google Scholar 

  • Fritschi FB, Lin H, Walker MA (2007) Xylella fastidiosa population dynamics in grapevine genotypes differing in susceptibility to Pierce’s disease. Am J Enol Vitic 58:326–332

    Google Scholar 

  • Fu YQ, van Silfhout A, Shahin A, Egberts R, Beers M, van der Velde A, van Houten A, van Tuyl JM, Visser RGF, Arens P (2017) Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. Mol Breed 37:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs M, Lemaire O (2017) Novel approaches for virus disease management. In: Meng B, Martelli GP, Golino DA, Fuchs MF (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Berlin, pp 599–621

    Chapter  Google Scholar 

  • Fussler L, Kobes N, Bertrand F, Mauray M, Grosman J, Savary S (2008) A characterization of grapevine trunk diseases in France from data generated by the National Grapevine Wood Diseases Survey. Phytopathology 98:571–579

    Article  CAS  PubMed  Google Scholar 

  • Gabler FM, Smilanick JL, Mansour M, Ramming DW, Mackey BE (2003) Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93:1263–1273

    Article  PubMed  Google Scholar 

  • Gadino AN, Walton VM, Dreves AJ (2011) Impact of vineyard pesticides on a beneficial arthropod, Typhlodromus pyri (Acari: Phytoseiidae), in laboratory bioassays. J Econ Entomol 104:970–977

    Article  CAS  PubMed  Google Scholar 

  • Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG (2012) Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 13:1–16

    Article  PubMed  Google Scholar 

  • Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662

    Article  CAS  PubMed  Google Scholar 

  • Gambino G, Perrone I, Carra A, Chitarra W, Boccacci P, Marinoni DT, Barberis M, Maghuly F, Laimer M, Gribaudo I (2010) Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res 19:17–27

    Article  CAS  PubMed  Google Scholar 

  • Gao YR, Han YT, Zhao FL, Li YJ, Cheng Y, Ding Q, Wang YJ, Wen YQ (2016) Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves. Plant Physiol Biochem 98:12–24

    Article  CAS  PubMed  Google Scholar 

  • Gessler C (2011) Plasmopora viticola: a review of knowledgr on downy mildew of grapevine and effective disease management. Phytopathol Mediterr 50:3–44

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gölles R, Moser R, Puhringer H, Katinger H, Da Camara Laimer, Machado M, Minafra A, Savino V, Saldarelli P, Da Camara Machado A (2000) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabisa mosaic virus, grapevine virus A and grapevine virus B. Acta Hortic 528:305–311

    Google Scholar 

  • Gonsalves D, Ferreira S, Suzuki J, Tripathi S (2008) Papaya. Compendium of transgenic crop plants. Blackwell Publishing, Oxford

    Google Scholar 

  • Gramaje D, Urbez-Torres JR, Sosnowski MR (2018) Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Dis 102:12–39

    Article  PubMed  Google Scholar 

  • Guan X, Essakhi S, Laloue H, Nick P, Bertsch C, Chong J (2016) Mining new resources for grape resistance against Botryosphaeriaceae: a focus on Vitis vinifera subsp. sylvestris. Plant Pathol 65:273–284

    Article  Google Scholar 

  • Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65

    Article  CAS  Google Scholar 

  • Halbrooks MC, Mortensen JA (1989) Origin and significance of Florida hybrid bunch grapes and rootstocks. HortScience 24:546–550

    Google Scholar 

  • Hamblin J (2015) Factors affecting grapevine susceptibility to Eutypa dieback. University of Adelaide, Adelaide

    Google Scholar 

  • Hennessy CR, Daly AM, Hearnden MN (2007) Assessment of grapevine cultivars for resistance to Phakopsora euvitis. Aust Plant Pathol 36:313–317

    Article  Google Scholar 

  • Herzog K, Wind R, Topfer R (2015) Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea. Sensors (Basel) 15:12498–12512

    Article  CAS  Google Scholar 

  • Hewitt WB (1958) The probable home of Pierce’s disease virus. Am J Enol Vitic 9:94–98

    Google Scholar 

  • Highet A, Wicks T (1998) The incidence of eutypa dieback in South Australian vineyards. Aust N Z Grapegrower Winemaker 414:135–136

    Google Scholar 

  • Hoffmann S, Di Gaspero G, Kovacs L, Howard S, Kiss E, Galbacs Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter V, Buyck B, Croll D, Viret O, Couloux A, Gindro K (2012) What if esca disease of grapevine were not a fungal disease? Fungal Divers 54:51–67

    Article  Google Scholar 

  • Hopkins DL (1989) Xylella fastidiosa—Xylem-limited bacterial pathogen of plants. Annu Rev Phytopathol 27:271–290

    Article  Google Scholar 

  • Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Xiu J, Zhang H, Guo X, Li C, Guo Z, Qian W (1988) A preliminary report on hermaphrodites Vitis amurensis cv ShuangYou. Acta Agric Univ Jilinensis 10:31–33

    Google Scholar 

  • Hwang C-F, Sapkota S, Chen L-L, Yang S, Cadle-Davidson L (2018) QTL mapping of downy mildew and botrytis bunch rot resistance in a Vitis aestivalis-derived ‘Norton’-based population. Paper presented at the XIIth international grapevine breeding and genetics conference, Bordeaux, France

    Google Scholar 

  • Jang MH, Moon YS, Noh JH, Kim SH, Hong SK, Yun HK (2011) In vitro evaluation system for varietal resistance against Ripe rot caused by Colletotrichum acutatum in grapevines. Hortic Environ Biotechnol 52:52–57

    Article  Google Scholar 

  • Jardak-Jamoussi R, Winterhagen P, Bouamama B, Dubois C, Mliki A, Wetzel T, Ghorbel A, Reustle GM (2009) Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tissue Organ 97:187–196

    Article  CAS  Google Scholar 

  • Jelly NS, Schellenbaum P, Walter B, Maillot P (2012) Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res 21:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Yun HK, Choi CS, Park JH, Jung YJ, Park KS, Dane F, Kang KK (2008) Identification of AFLP and RAPD markers linked to anthracnose resistance in grapes and their conversion to SCAR markers. Plant Breed 127:418–423

    Article  CAS  Google Scholar 

  • Komarek M, Cadkova E, Chrastny V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151

    Article  CAS  PubMed  Google Scholar 

  • Krivanek AF, Walker MA (2005) Vitis resistance to Pierce’s disease is characterized by differential Xylella fastidiosa populations in stems and leaves. Phytopathology 95:44–52

    Article  CAS  PubMed  Google Scholar 

  • Krivanek AF, Stevenson JF, Walker MA (2005) Development and comparison of symptom indices for quantifying grapevine resistance to Pierce’s disease. Phytopathology 95:36–43

    Article  CAS  PubMed  Google Scholar 

  • Krivanek A, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Kuczmog A, Galambos A, Horvath S, Matai A, Kozma P, Szegedi E, Putnoky P (2012) Mapping of crown gall resistance locus Rcg1 in grapevine. Theor Appl Genet 125:1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Kusch S, Panstruga R (2017) mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant Microbe Interact 30:179–189

    Article  CAS  PubMed  Google Scholar 

  • Kyrkou I, Pusa T, Ellegaard-Jensen L, Sagot MF, Hansen LH (2018) Pierce’s disease of grapevines: a review of control strategies and an outline of an epidemiological model. Front Microbiol 9:2141

    Article  PubMed  PubMed Central  Google Scholar 

  • Laimer M, Lemaire O, Herrbach E, Goldschmidt V, Minafra A, Bianco P, Wetzel T (2009) Resistance to viruses, phytoplasmas and their vectors in the grapevine in Europe: a review. J Plant Pathol 91:7–23

    Google Scholar 

  • Landi L, Murolo S, Romanazzi G (2012) Colonization of Vitis spp. wood by sGFP-transformed Phaeomoniella chlamydospora, a tracheomycotic fungus involved in esca disease. Phytopathology 102:290–297

    Article  PubMed  Google Scholar 

  • Le Moal J, Rolland M, Goria S, Wagner V, De Crouy-Chanel P, Rigou A, De Mouzon J, Royere D (2014) Semen quality trends in French regions are consistent with a global change in environmental exposure. Reproduction 147:567–574

    Article  PubMed  CAS  Google Scholar 

  • Legrand V, Dalmayrac S, Latche A, Pech JC, Bouzayen M, Fallot J, Torregrosa L, Bouquet A, Roustan JP (2003) Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci 164:809–814

    Article  CAS  Google Scholar 

  • Lin H, Leng H, Guo Y, Kondo S, Zhao Y, Shi G, Guo X (2019) QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. × V. amurensis Rupr.) crossing. Sci Hortic 244:200–207

    Article  CAS  Google Scholar 

  • Loomis NH (1958) Performance of Vitis species in the south as an indication of their relative resistance to Pierce’s disease. Plant Dis Rep 42:833–836

    Google Scholar 

  • Loschiavo A, Sosnowski M, Wicks T (2007) Incidence of eutypa dieback in the Adelaide hills. Aust NZ Grapegrower Winemaker 519:26–29

    Google Scholar 

  • Maghuly F, Leopold S, Machado AD, Fernandez EB, Khan MA, Gambino G, Gribaudo I, Schartl A, Laimer M (2006) Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Rep 25:546–553

    Article  CAS  PubMed  Google Scholar 

  • Mahanil S, Ramming D, Cadle-Davidson M, Owens C, Garris A, Myles S, Cadle-Davidson L (2012) Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor Appl Genet 124:23–33

    Article  CAS  PubMed  Google Scholar 

  • Maliogka V, Martelli GP, Fuchs M, Katis N (2014) Control of viruses infecting grapevine. Adv Virus Res 91:175–227

    Article  PubMed  CAS  Google Scholar 

  • Mannini F, Digiaro M (2017) The effects of viruses and viral diseases on grapes and wine. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Berlin

    Google Scholar 

  • Marchi G (2001) Susceptibility to esca of various grapevine (Vitis vinifera) cultivars grafted on different rootstocks in a vineyard in the province of Siena (Italy). Phytopathol Mediterr 40:27–36

    Google Scholar 

  • Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278

    Article  PubMed  Google Scholar 

  • Martelli GP (2017) An overview of grapevine viruses, viroids and the diseases they cause. In: Meng B, Martelli GP, Golino DA, Fuchs MF (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Berlin, pp 31–46

    Chapter  Google Scholar 

  • Martinelli L, Buzkhan N, Minafra A, Saldarelli P, Costa D, Poletti V, Festi S, Perl A, Martelli GP (2000) Genetic transformation of tobacco and grapevines for resistance to viruses related to the rugose wood disease complex. Acta Hortic 528:321–327

    CAS  Google Scholar 

  • Mauro MC, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106

    Article  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • Mejlhede N, Kyjovska Z, Backes G, Burhenne K, Rasmussen SK, Jahoor A (2006) EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes mlo and Mla of barley. Plant Breed 125:461–467

    Article  CAS  Google Scholar 

  • Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456

    Article  CAS  Google Scholar 

  • Merdinoglu D, Schneider C, Prado E, Wiedemann-Merdinoglu S, Mestre P (2018) Breeding for durable resistance to downy and powdery mildew in grapevine. OENO One 52:189–195

    Article  CAS  Google Scholar 

  • Morales-Cruz A, Amrine KCH, Blanco-Ulate B, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D (2015) Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens. BMC Genom 16:469

    Article  CAS  Google Scholar 

  • Morales-Cruz A, Allenbeck G, Figueroa-Balderas R, Ashworth VE, Lawrence DP, Travadon R, Smith RJ, Baumgartner K, Rolshausen PE, Cantu D (2018) Closed-reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk disease complex. Mol Plant Pathol 19:490–503

    Article  CAS  PubMed  Google Scholar 

  • Moreira FM, Madini A, Marino R, Zulini L, Stefanini M, Velasco R, Kozma P, Grando MS (2010) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet Genomes 7:153–167

    Article  Google Scholar 

  • Mortensen JA (1968) The inheritance of resistance to Pierce’s disease in Vitis. J Am Soc Hortic Sci 92:331–337

    Google Scholar 

  • Mortensen JA (1981) Sources and inheritance of resistance to Anthracnose in Vitis. J Hered 72:423–426

    Article  Google Scholar 

  • Mortensen JA (1988) Blanc Du Bois grape. HortScience 23:418–419

    Google Scholar 

  • Mortensen JA, Stover LH, Balerdi CF (1977) Sources of resistance to Pierce’s disease in Vitis. J Am Soc Hortic Sci 102:695–697

    Google Scholar 

  • Mundt CC (2018) Pyramiding for resistance durability: theory and practice. Phytopathology 108:792–802

    Article  CAS  PubMed  Google Scholar 

  • Murolo S, Romanazzi G (2014) Effects of grapevine cultivar, rootstock and clone on esca disease. Australas Plant Pathol 43:215–221

    Article  CAS  Google Scholar 

  • Naegele RP (2018) Evaluation of host resistance to Botrytis bunch rot in Vitis spp. and its correlation with botrytis leaf spot. HortScience 53:204–207

    Article  Google Scholar 

  • Newman KL, Almeida RPP, Purcell AH, Lindow SE (2003) Use of a green fluorescent strain for analysis of Xyella fastidiosa colonization of Vitis vinifera. Appl Environ Microb 69:7319–7327

    Article  CAS  Google Scholar 

  • Ochssner I, Hausmann L, Topfer R (2016) Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea. Vitis 55:79–81

    CAS  Google Scholar 

  • Oliver JE, Fuchs M (2011) Tolerance and resistance to viruses and their vectors in Vitis sp.: a virologist’s perspective of the literature. Am J Enol Vitic 62:438–451

    Article  Google Scholar 

  • Panstruga R (2005) Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Mol Biol 59:485–500

    Article  CAS  PubMed  Google Scholar 

  • Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Olah R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16:170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park CJ, Han SW, Chen XW, Ronald PC (2010) Elucidation of XA21-mediated innate immunity. Cell Microbiol 12:1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil S, Honrao B, Karmkar S (1998) Reaction of some grape germplasm against the rust diseases. J Maharashtra Agric Univ 23:138–140

    Google Scholar 

  • Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210

    Article  CAS  Google Scholar 

  • Pedneault K, Provost C (2016) Fungus resistant grape varieties as a suitable alternative for organic wine production: benefits, limits, and challenges. Sci Hortic 208:57–77

    Article  CAS  Google Scholar 

  • Peressotti E, Wiedemann-Merdinoglu S, Delmotte F, Bellin D, Di Gaspero G, Testolin R, Merdinoglu D, Mestre P (2010) Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biol 10:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry RL, Mollenhauer HH, Bowen HH (1974) Electron photomicroscopy verification of Pierce’s disease on grape plants from Texas. Plant Dis Rep 58:780–782

    Google Scholar 

  • Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L, Urso S, Vale G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3:16016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pezet R, Gindro K, Viret O, Richter H (2004a) Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis 43:145–148

    CAS  Google Scholar 

  • Pezet R, Gindro K, Viret O, Spring JL (2004b) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65:297–303

    Article  CAS  Google Scholar 

  • Pierce N (1892) The California vine disease: a preliminary report of investigations. US Dept of Agriculture, Bulletin No. 2, Washington, MD

    Google Scholar 

  • Pouzoulet J, Pivovaroff AL, Santiago LS, Rolshausen PE (2014) Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Front Plant Sci 5:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Raanan R, Gunier RB, Balmes JR, Beltran AJ, Harley KG, Bradman A, Eskenazi B (2017) Elemental sulfur use and associations with pediatric lung function and respiratory symptoms in an agricultural community (California, USA). Environ Health Perspect 125:087007

    Article  PubMed  PubMed Central  Google Scholar 

  • Raju BC, Goheen AC, Teliz D, Nyland G (1979) Occurrence of Pierce’s disease of grapevines in Mexico. Phytopathology 69:919

    Google Scholar 

  • Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P, Mahanil S, Cadle-Davidson L (2011) A single dominant locus, ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101:502–508

    Article  PubMed  Google Scholar 

  • Ren C, Liu XJ, Zhang Z, Wang Y, Duan W, Li SH, Liang ZC (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rex F, Fechter I, Hausmann L, Topfer R (2014) QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock ‘Borner’ (V. riparia Gm183 × V. cinerea Arnold). Theor Appl Genet 127:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V arizonica. Theor Appl Genet 113:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, Vezzulli S, Harbertson ES, Walker MA (2007) Use of molecular markers to correct grape breeding errors and determine the identity of novel sources of resistance to Xiphinema index and Pierce’s disease. Am J Enol Vitic 58:494–498

    Google Scholar 

  • Riaz S, Tenscher AC, Graziani R, Walker MA (2008) Using marker-assisted selection to breed for Pierce’s disease resistance in grape. Am J Enol Vitic 59:341a–341a

    Google Scholar 

  • Riaz S, Tenscher AC, Graziani R, Walker MA (2009) Breeding winegrapes with resistance to Pierce’s disease. Am J Enol Vitic 60:388a–389a

    Google Scholar 

  • Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, Boursiquot JM, Dangl GS, Lacombe T, Laucou V, Tenscher AC, Walker MA (2013) Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC Plant Biol 13:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riaz S, Huerta-Acosta K, Tenscher AC, Walker MA (2018a) Genetic characterization of Vitis germplasm collected from the southwestern US and Mexico to expedite Pierce’s disease-resistance breeding. Theor Appl Genet 131:1589–1602

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, Pap D, Tenscher A, Walker A (2018b) Durable powdery mildew resistance in grapevines: myth or reality. Paper presented at the XIIth International Grapevine Breeding and Genetics Conference, Bordeaux, France

    Google Scholar 

  • Ribéreau-Gayon J, Ribéreau-Gayon P, Seguin G (1980) Botrytis cinerea in enology. In: Coley-Smith JR, Verhoff K, Jarvis WR (eds) The biology of Botrytis. Academic Press, London, pp 251–274

    Google Scholar 

  • Richter R, Rossmann S, Töpfer R, Theres K, Zyprian E (2017) Genetic analysis of loose cluster architecture in grapevine. BIO Web Conf 9:01016

    Article  Google Scholar 

  • Robinson J, Harding J, Vouillamoz J (2012) Wine grapes: a complete guide to 1,368 vine varieties, including their origins and flavours. Penguin Books Ltd, London

    Google Scholar 

  • Rolshausen PE, Greve LC, Labavitch JM, Mahoney NE, Molyneux RJ, Gubler WD (2008) Pathogenesis of Eutypa lata in grapevine: Identification of virulence factors and biochemical characterization of cordon dieback. Phytopathology 98:222–229

    Article  CAS  PubMed  Google Scholar 

  • Rowe HC, Kliebenstein DJ (2008) Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180:2237–2250

    Article  PubMed  PubMed Central  Google Scholar 

  • Roznki D, Hoffmann S, Kozma P (2017) Screening a large set of grape accessions for resistance against black rot (Guignardia bidwellii/(Ell.)). Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Früchteverwertung 67:149–157

    Google Scholar 

  • Salvagnin U, Malnoy M, Thoming G, Tasin M, Carlin S, Martens S, Vrhovsek U, Angeli S, Anfora G (2018) Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behaviour. Plant Biotechnol J 16:264–271

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Mora FD, Saifert L, Zanghelini J, Assumpção WT, Guginski-Piva CA, Giacometti R, Novak EI, Klabunde GH, Eibach R, Dal Vesco L, Nodari RO, Welter LJ (2017) Behavior of grape breeding lines with distinct resistance alleles to downy mildew (Plasmopara viticola). Crop Breed Appl Biotechnol 17:141–149

    Article  CAS  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance—deriving resistance genes from the parasites own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Sapkota S, Chen L-L, Schreiner K, Ge H, Hwang C-F (2015) A phenotypic study of Botrytis bunch rot resistance in Vitis aestivalis-derived ‘Norton’ grape. Trop Plant Pathol 40:279–282

    Article  Google Scholar 

  • Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in Oleander, Almond and Olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J Plant Pathol 95:668

    Google Scholar 

  • Saporta R, San Pedro T, Gisbert C (2016) Attempts at grapevine (Vitis vinifera L.) breeding through genetic transformation: the main limiting factors. Vitis 55:173–186

    CAS  Google Scholar 

  • Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Topfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176

    Article  CAS  PubMed  Google Scholar 

  • Scorza R, Cordts JM, Gray DJ, Gonsalves D, Emershad RL, Ramming DW (1996) Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L) plants. J Am Soc Hortic Sci 121:616–619

    Article  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan A, Zagrai I, Polak J, Malinowski T, Cambra M, Levy L, Damsteegt V, Krska B, Cordts J, Gonsalves D, Dardick C (2016) ‘HoneySweet’ (C5), the first genetically engineered plum pox virus-resistant Plum (Prunus domestica L.) cultivar. HortScience 51:601–603

    Article  CAS  Google Scholar 

  • Shavrukov YN, Dry IB, Thomas MR (2004) Inflorescence and bunch architecture development in Vitis vinifera L. Aust J Grape Wine Res 10:116–124

    Article  Google Scholar 

  • Smithyman RP, Howell GS, Miller DP (1998) The use of competition for carbohydrates among vegetative and reproductive sinks to reduce fruit set and Botrytis bunch rot in Seyval blanc grapevines. Am J Enol Vitic 49:163–170

    CAS  Google Scholar 

  • Soler N, Fagoaga C, Chiibi S, López C, Moreno P, Navarro L, Flores R, Peña L (2011) RNAi-mediated protection against Citrus tristeza virus in transgenic Citrus plants non coding RNAs in Plants, RNA technologies. Springer, Berlin

    Google Scholar 

  • Song R, Lu W, Wang J, Shen Y, Shi G, Li W (1998) A new grapevine variety of Vitis amurensis. China Fruits 4:5–7

    Google Scholar 

  • Song S, Fu P, Lu J (2018) Downy mildew resistant QTLs in Vitis amurensis ‘Shuang Hong’ grapevine. Paper presented at the XIIth International Grapevine Breeding and Genetics Conference, Bordeaux, France

    Google Scholar 

  • Sosnowski MR, Lardner R, Wicks TJ, Scott ES (2007) The influence of grapevine cultivar and isolate of Eutypa lata on wood and foliar symptoms. Plant Dis 91:924–931

    Article  CAS  PubMed  Google Scholar 

  • Sosnowski M, Ayres M, McCarthy M, Wicks T, Scott E (2016) Investigating the potential for resistance to grapevine trunk diseases. Wine Vitic J 31:41–45

    Google Scholar 

  • Stam R, McDonald BA (2018) When resistance gene pyramids are not durable—the role of pathogen diversity. Mol Plant Pathol 19:521–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Staudt G (1997) Evaluation of resistance to grapevine powdery mildew (Uncinula necator [Schw.] Burr., anamorph Oidium tuckeri Berk.) in accessions of Vitis species. Vitis 36:151–154

    Google Scholar 

  • Staudt G, Kassemeyer HH (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis 34:225–228

    Google Scholar 

  • Stoner WN (1953) Leafhopper transmission of a degeneration of grape in Florida and its relation to Pierce’s disease. Phytopathology 43:611–615

    Google Scholar 

  • Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to Crown Gall disease of grapevine. Vitis 23:121–126

    Google Scholar 

  • Tasin M, Backman AC, Bengtsson M, Ioriatti C, Witzgall P (2006) Essential host plant cues in the grapevine moth. Naturwissenschaften 93:141–144

    Article  CAS  PubMed  Google Scholar 

  • Teh SL, Fresnedo-Ramirez J, Clark MD, Gadoury DM, Sun Q, Cadle-Davidson L, Luby JJ (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breed 37:1

    Article  CAS  PubMed  Google Scholar 

  • Tello J, Ibanez J (2018) What do we know about grapevine bunch compactness? A state-of-the-art review. Aust J Grape Wine Res 24:6–23

    Article  Google Scholar 

  • Tello J, Aguirrezabal R, Hernaiz S, Larreina B, Montemayor MI, Vaquero E, Ibanez J (2015) Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Aust J Grape Wine Res 21:277–289

    Article  Google Scholar 

  • Tello J, Torres-Perez R, Grimplet J, Ibanez J (2016) Association analysis of grapevine bunch traits using a comprehensive approach. Theor Appl Genet 129:227–242

    Article  CAS  PubMed  Google Scholar 

  • Thiery D, Louapre P, Muneret L, Rusch A, Sentenac G, Vogelweith F, Iltis C, Moreau J (2018) Biological protection against grape berry moths. A review. Agron Sustain Dev 38:15

    Article  Google Scholar 

  • Tobias PA, Guest DI (2014) Tree immunity: growing old without antibodies. Trends Plant Sci 19:367–370

    Article  CAS  PubMed  Google Scholar 

  • Travadon R, Baumgartner K, Rolshausen PE, Gubler WD, Sosnowski MR, Lecomte P, Halleen F, Peros JP (2012) Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents. Plant Pathol 61:85–95

    Article  Google Scholar 

  • Travadon R, Rolshausen PE, Gubler WD, Cadle-Davidson L, Baumgartner K (2013) Susceptibility of cultivated and wild Vitis spp. to wood infection by fungal trunk pathogens. Plant Dis 97:1529–1536

    Article  PubMed  Google Scholar 

  • Vail ME, Marois JJ (1991) Grape cluster architecture and the susceptibility of berries to Botrytis cinerea. Phytopathology 81:188–191

    Article  Google Scholar 

  • Vail ME, Wolpert JA, Gubler WD, Rademacher MR (1998) Effect of cluster tightness on Botrytis bunch rot in six Chardonnay clones. Plant Dis 82:107–109

    Article  CAS  PubMed  Google Scholar 

  • Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D, Cindric P, Kozma P, Scalabrin S, Morgante M, Testolin R, Di Gaspero G (2013) Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS ONE 8:e61228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezzulli S, Malacarne G, Masuero D, Vecchione A, Haile ZM, Banchi E, Velasco R, Stefanini M, Vhrovsek U, Zulini L, Franceschi P, Moser C (2018) The Rpv3-3 locus and stilbenoid induction mediate downy mildew resistance in a grapevine inter-specific population. In: XIIth international grapevine breeding and genetics conference, Bordeaux, France, 2018

    Google Scholar 

  • Wan Y, Schwaniniger H, He P, Wang Y (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46:132–136

    Google Scholar 

  • Wan R, Hou X, Wang X, Qu J, Singer SD, Wang Y, Wang X (2015) Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Front Plant Sci 6:854

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu Y, He P, Lamikanra O, Lu J (1998) Resistance of Chinese Vitis species to Elsinoe ampelina (de Bary) Shear. HortScience 33:123–126

    Article  Google Scholar 

  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang XH, Tu MX, Wang DJ, Liu JW, Li YJ, Li Z, Wang YJ, Wang XP (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855

    Article  CAS  PubMed  Google Scholar 

  • Welter LJ, Gokturk-Baydar N, Akkurt M, Maul E, Eibach R, Topfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374

    Article  CAS  Google Scholar 

  • Wilcox WF, Gubler WD, Uyemoto JK (2015) Diseases caused by biotic factors. In: Compendium of grape diseases, disorders, and pests, 2nd edn. APS Press, St Paul, MN, pp 17–146

    Google Scholar 

  • Zabadal TJ, Dittmer TW (1998) Vine management systems affect yield, fruit quality, cluster compactness, and fruit rot of ‘Chardonnay’ grape. HortScience 33:806–809

    Article  Google Scholar 

  • Zendler D, Schneider P, Töpfer R, Zyprian E (2017) Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213:68

    Article  CAS  Google Scholar 

  • Zyprian E, Ochssner I, Schwander F, Simon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Topfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genom 291:1573–1594

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Dry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dry, I., Riaz, S., Fuchs, M., Sosnowski, M., Thomas, M. (2019). Scion Breeding for Resistance to Biotic Stresses. In: Cantu, D., Walker, M. (eds) The Grape Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-18601-2_15

Download citation

Publish with us

Policies and ethics