Skip to main content
Log in

Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The single, dominant powdery mildew resistance locus Ren4 from Vitis romanetii prevents hyphal growth by Erysiphe necator. Previously, we showed that when introgressed into V. vinifera in the modified BC2 population 03-3004, Ren4 was linked with the simple sequence repeat marker VMC7f2 on chromosome 18—a marker that is associated with multiple disease resistance and seedlessness. However, in the current study, this marker was monomorphic in related breeding populations 05-3010 and 07-3553. To enhance marker-assisted selection at this locus, we developed multiplexed SNP markers using three approaches: conversion of bulked segregant analysis AFLP markers, sequencing of candidate genes and regions flanking known V. vinifera SNPs, and hybridization to the Vitis9KSNP genotyping array. The Vitis9KSNP array was more cost-efficient than all other approaches tested for marker discovery and genotyping, enabling the genotyping of 1317 informative SNPs within the span of 1 week and at a cost of 11 cents per SNP. From a total of 1,446 high quality, informative markers segregating in 03-3004, we developed a haplotype signature of 15 multiplexed SNP markers linked with Ren4 in 03-3004, 5 of which were linked in 05-3010, and 6 of which were linked in 07-3553. Two of these populations segregated for seedlessness, which was tightly linked with Ren4 in 03-3004 (2 cM) but not in 05-3010 (22 cM). Chromosomal rearrangements were detected among these three populations and the reference genome PN40024. Since this is the first application of the Vitis9KSNP array in a breeding program, some suggestions are provided for application of genotyping arrays. Our results provide novel markers for tracking and pyramiding this unique resistance gene and for further functional characterization of this region on chromosome 18 encoding multiple disease resistance and seedlessness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam-Blondon A-F, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Akkurt M, Welter L, Maul E, Topfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Mol Breed 19(2):103–111

    Article  CAS  Google Scholar 

  • Arroyo-Garcia R, Martinez-Zapater JM (2004) Development and characterization of new microsatellite markers for grape. Vitis 4:175–178

    Google Scholar 

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111(2):370–377

    Article  PubMed  CAS  Google Scholar 

  • Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120(1):163–176

    Article  PubMed  Google Scholar 

  • Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246

    CAS  Google Scholar 

  • Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633

    Article  PubMed  CAS  Google Scholar 

  • Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585

    Article  PubMed  CAS  Google Scholar 

  • Cadle-Davidson L, Chicoine DR, Consolie NC (2011) Variation within and between Vitis species for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis 95:202–211

    Article  Google Scholar 

  • Coleman C, Copetti D, Cipriani G, Hoffman S, Kozma P, Kovacs L, Morgante M, Testolin R, Di Gaspero G (2009) The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genet 10:89

    Google Scholar 

  • Costantini L, Grando MS, Feingold S, Ulanovsky S, Mejia N, Hinrichsen P, Doligez A, This P, Cabezas JA, Martinez-Zapater JM (2007) Generation of a common set of mapping markers to assist table grape breeding. Am J Enol Vitic 58(1):102–111

    Google Scholar 

  • Dalbo MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic Sci 126(1):83–89

    Google Scholar 

  • Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani C (2000) Conservation of microsatellite loci within the genus Vitis. Theor Appl Genet 101:301–308

    Article  CAS  Google Scholar 

  • Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR, Dry IB (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104:610–618

    Article  PubMed  CAS  Google Scholar 

  • Eibach R, Zyprian E, Welter L, Topfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46(3):120–124

    CAS  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108(3):501–515

    Article  PubMed  CAS  Google Scholar 

  • Gorg R, Hollricher K, Schulze-Lefert P (1993) Functional analysis and RFLP-mediated mapping of the Mlg resistance locus in barley. Plant J 3(6):857–866

    Article  Google Scholar 

  • Hayes AJ, Jeong SC, Gore MA, Yu YG, Buss GR, Tolin SA, Maroof MAS (2004) Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans. Genetics 166(1):493–503

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen JH (1992) Discovery, characterization and exploitation of mlo powdery mildew resistance in barley. Euphytica 63(1–2):141–152

    Article  Google Scholar 

  • Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16(11):2870–2894

    Article  PubMed  CAS  Google Scholar 

  • Mahanil S, Reisch BI, Owens CL, Thipyapong P, Laosuwan P (2007) Resistance gene analogs from Vitis cinerea, Vitis rupestris, and Vitis hybrid Horizon. Am J Enol Vitic 58(4):484–493

    CAS  Google Scholar 

  • Mahanil S, Lagerholm S, Cadle-Davidson L (2009) Pattern of genetic variation in Mlo among Vitis spp. and interspecific hybrids. IS-MPMI 2009

  • Mahanil S, Lagerholm S, Garris A, Owens CL, Ramming DW, Cadle-Davidson L (2011) Development of molecular markers for powdery mildew resistance in grapevines. Acta Hortic (in press)

  • Marano MR, Malcuit I, De Jong W, Baulcombe DC (2002) High-resolution genetic map of Nb, a gene that confers hypersensitive resistance to potato virus X in Solanum tuberosum. Theor Appl Genet 105(2–3):192–200

    PubMed  CAS  Google Scholar 

  • Mejia N, Gebauer M, Munoz L, Hewstone N, Munoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. Am J Enol Vitic 58(4):499–507

    Google Scholar 

  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon A-F, Decrooocq S (2005) Development and characterization of a large set of microsattellite markers in grapevine (Vitis vinifera L.) suitable for mutiplex PCR. Mol Breed 15:349–366

    Article  CAS  Google Scholar 

  • Menzel S, Qin J, Vasavda N, Thein SL, Ramakrishnan R (2010) Experimental generation of SNP haplotype signatures in patients with sickle cell anaemia. PLoS One 5(9):e13004

    Article  PubMed  Google Scholar 

  • Moroldo M, Paillard S, Marconi R, Fabrice L, Canaguier A, Cruaud C, De Berardinis V, Guichard C, Brunaud V, Le Clainche I, Scalabrin S, Testolin R, Di Gaspero G, Morgante M, Adam-Blondon AF (2008) A physical map of the heterozygous grapevine ‘Cabernet Sauvignon’ allows mapping candidate genes for disease resistance. BMC Plant Biol 8:66

    Google Scholar 

  • Myles S, Chia JM, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus Vitis. PLoS One 5(1):9

    Article  Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J-M, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3530–3535

    Article  PubMed  CAS  Google Scholar 

  • Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210

    Article  CAS  Google Scholar 

  • Peressotti E, Wiedemann-Merdinoglu S, Delmotte F, Bellin D, Di Gaspero G, Testolin R, Merdinoglu D, Mestre P (2010) Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biol 10:147

    Article  PubMed  Google Scholar 

  • Ramming DW (1990) The use of embryo culture in fruit breeding. Hortscience 25(4):393–398

    Google Scholar 

  • Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P, Mahanil S, Cadle-Davidson L (2011) A single dominant locus Ren4 confers non-race-specific penetration resistance to grapevine powdery mildew. Phytopathology 101:502–508

    Article  PubMed  Google Scholar 

  • Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073

    Article  PubMed  CAS  Google Scholar 

  • Sefc KM, Regner F, Turetschek E, Gloss J, Steinkellner H (1999) Identification of microsattelite sequence in Vitis species. Genome 42:367–373

    PubMed  CAS  Google Scholar 

  • Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R (2007) A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring pinot noir bacterial artificial chromosome contigs. Genetics 176:2637–2650

    Article  PubMed  CAS  Google Scholar 

  • van der Voort JR, Kanyuka K, van der Vossen E, Bendahmane A, Mooijman P, Klein-Lankhorst R, Stiekema W, Baulcombe D, Bakker J (1999) Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species Solanum tuberosum subsp andigena CPC1673 into cultivated potato. Mol Plant Microbe Interact 12(3):197–206

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap®4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6, software for the mapping and quantitative trait loci in experimental population of diploid species. Kyazma B.V., Wageningen

    Google Scholar 

  • Vezzulli S, Micheletti D, Riaz S, Pindo M, Viola R, This P, Walker MA, Troggio M, Velasco R (2008) A SNP transferability survey within the genus Vitis. BMC Plant Biol 8:128

    Article  PubMed  Google Scholar 

  • Wan Y, Schwaninger H, He P, Wang Y (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46(3):132–136

    Google Scholar 

  • Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21:2898–2913

    Article  PubMed  CAS  Google Scholar 

  • Welter LJ, Gokturk-Baydar N, Akkurt M, Maul E, Eibach R, Topfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Mol Breed 20:359–374

    Article  CAS  Google Scholar 

  • Zhang ZG, Feechan A, Pedersen C, Newman MA, Qiu JL, Olesen KL, Thordal-Christensen H (2007) A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant J 49(2):302–312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the American Vineyard Foundation. Development of the Vitis9KSNP array and its application in genotyping of the parents and 18 progeny was funded by a grant from USDA-ARS to Ed Buckler and Doreen Ware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance Cadle-Davidson.

Additional information

Communicated by C. Gebhardt.

S. Mahanil and D. Ramming equally contributed to this study.

Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahanil, S., Ramming, D., Cadle-Davidson, M. et al. Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor Appl Genet 124, 23–33 (2012). https://doi.org/10.1007/s00122-011-1684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1684-7

Keywords

Navigation