Skip to main content
Log in

Association analysis of grapevine bunch traits using a comprehensive approach

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A set of SNP markers associated to bunch compactness and related traits were identified in grapevine.

Abstract

Bunch compactness plays an important role in the sanitary status and perceived quality of table and wine grapes, being influenced by cultural practices and by environmental and genetic factors, which are mostly unknown. In this work, we took advantage of genetic, genomic and bioinformatic advances to analyze part of its molecular basis through a combination of transcriptomic and association analyses. Results from different transcriptomic comparisons between loose and compact grapevine clones were analyzed to select a set of candidate genes likely involved in the observed variation for bunch compactness. Up to 183 genes were sequenced in a grapevine collection, and 7032 single nucleotide polymorphisms (SNPs) were detected in more than 100 varieties with a frequency of the minor allele over 5 %. They were used to test their association in three consecutive seasons with bunch compactness and two of its most influencing factors: total berry number and length of the first ramification of the rachis. Only one SNP was associated with berry number in two seasons, suggesting the high sensitiveness of this trait to seasonal environmental changes. On the other hand, we found a set of SNPs associated with both the first ramification length and bunch compactness in various seasons, in several genes which had not previously related to bunch compactness or bunch compactness-related traits. They are proposed as interesting candidates for further functional analyses aimed to verify the results obtained in this work, as a previous step to their inclusion in marker-assisted selection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Villaverde V, Boso S, Santiago JL, Gago P, Martínez MC (2008) Relationship between susceptibility to Botrytis bunch rot and grape cluster morphology in the Vitis vinifera L. cultivar Albariño. Int J Fruit Sci 8:251–265

    Article  Google Scholar 

  • Battilana J, Emanuelli F, Gambino G, Gribaudo I, Gasperi F, Boss PK, Grando MS (2011) Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284 N on Muscat flavour formation. J Exp Biol 62:5497–5508

    CAS  Google Scholar 

  • Becker T, Knoche M (2012) Water induces microcracks in the grape berry cuticle. Vitis 51:141–142

    Google Scholar 

  • Bergamini C, Cardone MF, Anaclerio A, Perniola R, Pichierri A, Genghi R, Alba V, Forleo LR, Caputo AR, Montemurro C, Blanco A, Antonacci D (2013) Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Mol Biotechnol 54:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Brink JC, Holz G, Fourie PH (2006) Effect of fungicide spray cover on Botrytis cinerea infection in grape bunches. S Afr J Enol Vitic 27:51–56

    CAS  Google Scholar 

  • Cardoso S, Lau W, Eiras Dias J, Fevereiro P, Maniatis N (2012) A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L. PLoS One 7:e46021

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmona MJ, Chaib J, Martínez-Zapater JM, Thomas MR (2008) A molecular genetic perspective of reproductive development in grapevine. J Exp Biol 59:2579–2596

    CAS  Google Scholar 

  • Carrier G, Huang YF, Le Cunff L, Fournier-Level A, Vialet S, Souquet JM, Cheynier V, Terrier N, This P (2013) Selection of candidate genes for grape proanthocyanidin pathway by an integrative approach. Plant Physiol Biochem 72:87–95

    Article  PubMed  CAS  Google Scholar 

  • Chitwood DH, Ranjan A, Martínez CC, Headland LR, Thiem T, Kumar R, Covington MF, Hatcher T, Naylor DT, Zimmerman S, Downs N, Raymundo N, Buckler ES, Maloof DT, Aradhya M, Prins B, Li L, Myles S, Sinha NR (2014) A modern ampelography: a genetic basis for leaf shape and venation patterning in Vitis vinifera. Plant Physiol 164:259–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110

    Article  Google Scholar 

  • Correa J, Mamani M, Muñoz-Espinoza C, Laborie D, Muñoz C, Pinto M, Hinrichsen P (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon J-M, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Riquelme J, Martínez-Zapater JM, Carmona MJ (2014) Transcriptional analysis of tendril and inflorescence development in grapevine (Vitis vinifera L.). PLoS One 9:e92339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díaz-Riquelme J, Grimplet J, Martinez-Zapater JM, Carmona MJ (2012) Transcriptome variation along bud development in grapevine (Vitis vinifera L.). BMC Plant Biol 12:1–13

    Article  CAS  Google Scholar 

  • Dragincic J, Korac N, Blagojevic B (2015) Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Comput Electron Agric 111:194–202

    Article  Google Scholar 

  • Drew JE, Gatehouse JA (1997) Isolation and characterization of a pea pod cDNA encoding a putative blue copper protein correlated with lignin deposition. J Exp Biol 45:1873–1884

    Google Scholar 

  • Dunn GM, Martin SR (2007) A functional association in Vitis vinifera L. cv. Cabernet Sauvignon between the extent of primary branching and the number of flowers formed per inflorescence. Aust J Grape Wine Res 13:95–100

    Article  Google Scholar 

  • Ebadi A, Coombe BG, May P (1995) Fruit-set on small Chardonnay and Shiraz vines grown under varying temperature regimes between budburst and flowering. Aust J Grape Wine Res 1:3–10

    Article  Google Scholar 

  • Ehret GB (2010) Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep 12:17–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot J-M, This P, Grando MS (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emanuelli F, Sordo M, Lorenzi S, Battilana J, Grando MS (2014) Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine. Mol Breed 33:235–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Evers D, Molitor D, Rothmeier M, Behr M, Fischer S, Hoffmann L (2010) Efficiency of different strategies for the control of grey mold on grapes including gibberellic acid (GIBB3), leaf removal and/or botrycide treatments. J Int Sci Vigne Vin 44:151–159

    CAS  Google Scholar 

  • Ezzili B (1993) Modification of the floral programme after the formation of the inflorescence in the principal latent buds of Vitis vinifera L. Bull l’OIV (Off Int Vigne Vin) 66:5–17

    Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664

    Article  PubMed  CAS  Google Scholar 

  • Fermaud M (1998) Cultivar susceptibility of grape berry clusters to larvae of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 91:974–980

    Article  Google Scholar 

  • Fernandez L, Torregrosa L, Segura V, Bouquet A, Martínez-Zapater JM (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J 61:545–557

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Le Cunff L, Tello J, Lacombe T, Boursiquot JM, Fournier-Level A, Bravo G, Lalet S, Torregrosa L, This P, Martinez-Zapater JM (2014) Haplotype diversity of VvTFL1A gene and association with cluster traits in grapevine (V. vinifera). BMC Plant Biol 14:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp.sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimplet J, Van Hermet J, Carbonell-Bejerano P, Díaz-Riquelme J, Dickerson J, Fennell A, Pezzotti M, Martínez-Zapater JM (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 5:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanni E, Lardschneider E, Kelderer M (2013) Alternatives to the use of gibberellins for bunch thinning and bunch compactness reduction on grapevine. First Int Workshop Vineyard Mech Grape Wine Qual Acta Hortic 978:335–345

    Google Scholar 

  • Hayashi H, Nishimuri M (2003) Entering a new era of research on plant peroxisomes. Curr Opin Plant Biol 6:577–582

    Article  PubMed  CAS  Google Scholar 

  • He H, Zhu S, Wang W, Bie T, Chen P (2011) Cloning and expression analysis of a blue copper-binding protein gene from Dasypyrum Villosum. Afr J Biotechnol 10:7155–7160

    CAS  Google Scholar 

  • Hed B, Ngugi HK, Travis JW (2011) Use of gibberellic acid for management of bunch rot on Chardonnay and Vignoles grape. Plant Dis 95:269–278

    Article  CAS  Google Scholar 

  • Hed B, Ngugi HK, Travis JW (2015) Short- and long-term effects of leaf removal and gibberellin on chardonnay grapes in the Lake Erie region of Pennsylvania. Am J Enol Vitic 66:22–29

    Article  CAS  Google Scholar 

  • Ibáñez J, Carreño J, Yuste J, Martínez-Zapater JM (2015) Grapevine breeding and clonal selection programmes in Spain. In: Reynolds A (ed) Grapevine breeding programs for the wine industry, 1st edn. Woodhead Publishing, Cambridge, pp 183–209

    Google Scholar 

  • Intrieri C, Allegro G, Valentini G, Pastore C, Colucci E, Filippetti I (2013) Effect of pre-bloom anti-transpirant treatments and leaf removal on “Sangiovese” (Vitis vinifera L.) winegrapes. Vitis 52:117–124

    Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, French-Italian Public Consortium for Grapevine Genome C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    Article  PubMed  CAS  Google Scholar 

  • Jugessur A, Shi M, Gjessing HK, Lie RT, Wilcox AJ, Weinberg CR, Christensen K, Boyles AL, Daack-Hirsch S, Trung TN, Bille C, Lidral AC, Murray JC (2009) Genetic determinants of facial clefting: analysis of 357 candidates genes using two national cleft studies from Scandinavia. PLoS One 4:e5385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karaagac E, Vargas AM, de Andrés MT, Carreño I, Ibáñez J, Carreño J, Martínez-Zapater JM, Cabezas JA (2012) Marker assisted selection for seedlessness in table grape breeding. Tree Genet Genomes 8:1003–1015

    Article  Google Scholar 

  • Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Biol 63:4045–4060

    CAS  Google Scholar 

  • Kim HJ, Hinchliffe DJ, Triplett BA, Chen ZF, Stelly DM, Yeater KM, Moon HS, Gilbert MK, Thyssen GN, Turley RB, Fang DB (2015) Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS One 10:e0125046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ky I, Lorrain B, Jourdes M, Pasquier G, Fermaud M, Gény L, Rey P, Doneche B, Teissedre PL (2012) Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Aust J Grape Wine Res 18:215–226

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebon G, Duchene E, Brun O, Magne C, Clement C (2004) Flower abscission and inflorescence carbohydrates in sensitive and non-sensitive cultivars of grapevine. Sex Plant Reprod 17:71–79

    Article  CAS  Google Scholar 

  • Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clement C (2008) Sugars and flowering in the grapevine (Vitis vinifera L.). J Exp Biol 59:2565–2578

    CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup aGPDP (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Böck A, Haseneyer G, Korzun V, Wilde P, Schön C-C, Ankerst DP, Bauer E (2011) Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC Plant Biol 11:146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lijavetzky D, Cabezas JA, Ibáñez A, Rodriguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genom 8:424

    Article  Google Scholar 

  • Lu Y, Zhang S, Shah T, xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci 107:19585–19590

    Article  PubMed  PubMed Central  Google Scholar 

  • Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278

    Article  PubMed  Google Scholar 

  • Marois JJ, Nelson JK, Morrison JC, Lile LS, Bledsoe AM (1986) The influence of berry contact within grape clusters on the development of Botrytis cinerea and epicuticular wax. Am J Enol Vitic 37:293–296

    Google Scholar 

  • Martínez-Zapater JM, Carmona MJ, Díaz-Riquelme J, Fernández L, Lijavetzky D (2010) Grapevine genetics after the genome sequence: challenges and limitations. Aust J Grape Wine Res 16:33–46

    Article  Google Scholar 

  • Matus JT, Loyola R, Vega A, Pena-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Biol 60(3):853–867

    CAS  Google Scholar 

  • May P (2000) From bud to berry, with special reference to inflorescence and bunch morphology in Vitis vinifera L. Aust J Grape Wine Res 6:82–98

    Article  Google Scholar 

  • Mejia N, Soto B, Guerrero M, Casanueva X, Houel C, Angeles MMD, Ramos R, Le CL, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molitor D, Rothmeier M, Behr M, Fischer S, Hoffman L, Evers D (2011) Crop cultural and chemical methods to control grey mould on grapes. Vitis 50:81–87

    Google Scholar 

  • Molitor D, Behr M, Hoffman L, Evers D (2012a) Benefits and drawbacks of pre-bloom applications of gibberellic acid (GA3) for stem elongation in Sauvignon blanc. S Afr J Enol Vitic 33:198–202

    CAS  Google Scholar 

  • Molitor D, Behr M, Hoffman L, Evers D (2012b) Impact of grape cluster division on cluster morphology and bunch rot epidemic. Am J Enol Vitic 63:508–514

    Article  Google Scholar 

  • Moschos T (2006) Yield loss quantification and economic injury level estimation for the carpophagous generations of the European grapevine moth Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae). Int J Pest Manag 52:141–147

    Article  Google Scholar 

  • Nersissian AM, Immoos C, Hill MG, Hart PJ, Williams G, Herrmann RG, Valentine JS (1998) Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Sci 7:1915–1929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogura T, Busch W (2015) From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. Curr Opin Plant Biol 23:98–108

    Article  PubMed  CAS  Google Scholar 

  • OIV (2007) OIV descriptor list for grape varieties and Vitis species, 2nd edn. Organisation Internationale de la Vigne et du Vin, Paris

    Google Scholar 

  • Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed Jul 2015

  • Pe’er I, Yelensky R, Alstshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32:381–385

    Article  PubMed  Google Scholar 

  • Petrie PR, Clingeleffer PR (2005) Effects of temperature and light (before and after budburst) on inflorescence morphology and flower number of Chardonnay grapevines (Vitis vinifera L.). Aust J Grape Wine Res 11:59–65

    Article  Google Scholar 

  • Prabhu-Dhanapal A, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LS, King CA, Cregan PB, Song Q, Fritschi FB (2015) Genome-wide association study (GWAS) of carbon isotope ratio(δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet 128:73–91

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Badenes ML, Byrne DH (eds) Fruit breeding, handbook of plant breeding. Springer, New York, pp 225–262

    Google Scholar 

  • Ribéreau-Gayon P (1983) Alteration of wine quality caused by Botrytis damages. Vignevini 10:48–52

    Google Scholar 

  • Richmond TA, Bleecker AB (1999) A defect in β-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–1923

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8ʹ-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarooshi RA (1977) Some effects of girdling, gibberellic acid sprays, bunch thinning and trimming on the sultana. Aust J Exp Agric Anim Husb 17:700–704

    Article  Google Scholar 

  • Shavrukov YN, Dry IB, Thomas MR (2004) Inflorescence and bunch architecture development in Vitis vinifera L. Aust J Grape Wine Res 10:116–124

    Article  Google Scholar 

  • Shu X, Rasmussen SK (2014) Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front Plant Sci 5:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Sternad-Lemut M, Sivilotti P, Butinar L, Laganis J, Vrhovsek U (2015) Pre-flowering leaf removal alters grape microbial population and offers good potential for a more sustainable and cost-effective management of a Pinot Noir vineyard. Aust J Grape Wine Res 21(3):439–450

    Article  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Tello J, Aguirrezábal R, Hernaiz S, Larreina B, Montemayor MI, Vaquero E, Ibáñez J (2015a) Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Aust J Grape Wine Res 21:277–289

    Article  Google Scholar 

  • Tello J, Torres-Pérez R, Grimplet J, Carbonell-Bejerano P, Martínez-Zapater JM, Ibáñez J (2015b) Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. BMC Plant Biol (in press). doi:10.1186/s12870-015-0622-2

  • Thorvaldsdóttir H, Robinson JT, Mesirov JP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M (2015) Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. J Exp Bot 66(1):293–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T, Nambara E, Y O, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major ABA 8ʹ-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182

    Article  PubMed  CAS  Google Scholar 

  • Vail ME, Marois JJ (1991) Grape cluster architecture and the susceptibility of berries to Botrytis cinerea. Phytopathology 81:188–191

    Article  Google Scholar 

  • Vargas A-M, Fajardo C, Borrego J, de Andrés MT, Ibáñez J (2013a) Polymorphisms in VvPel associate with variation in berry texture and bunch size in the grapevine. Aust J Grape Wine Res 19:193–207

    Article  CAS  Google Scholar 

  • Vargas A-M, Le Cunff L, This P, Ibáñez J, de Andrés M-T (2013b) VvGAl1 polymorphisms associate with variation for berry traits in grapevine. Euphytica 191:85–98

    Article  CAS  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Vartholomaiou AN, Navrozidis EI, Payne CC, Salpiggidis GA (2008) Agronomic techniques to control Lobesia botrana. Phytoparasitica 36:264–271

    Article  Google Scholar 

  • Viana AP, Riaz S, Walker MA (2013) Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Genet Mol Res 12:951–964

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y (2012) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Lin M (2006) Functional mapping—how to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet 7:229–237

    Article  PubMed  Google Scholar 

  • Young PR, Vivier MA (2010) Genetics and genomic approaches to improve grape quality for winemaking. In: Reynolds AG (ed) Managing wine quality: viticulture and wine quality. Woodhead Publishing Limited, Great Abington, pp 316–364

    Chapter  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zabadal TJ, Dittmer TW (1998) Vine management systems affect yield, fruit quality, cluster compactness, and fruit rot of ‘Chardonnay’ grape. HortScience 33:806–809

    Google Scholar 

  • Zhang ZW, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu JM, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng H, Zhang Z, Zhang J, Ji C, Yu X, Zhang S, Tao J (2014) Male sterility and repression of the phenylpropanoid pathway in transgenic tobacco plants induced by the grapevine VvMYB4 gene cloned from “Zhong Shan Hong” (Vitis vinifera L.). XI International conference on Grapevine Breeding and Genetics, Beijing (China), p 181

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge R. Aguirrezábal, S. Hernáiz, B. Larreina, M.I. Montemayor and E. Vaquero for their technical assistance, as well as CIDA (Gobierno de la Rioja) for the maintenance of the plant material used in this work. We acknowledge J.M. Martínez-Zapater and N. Diestro for providing unpublished data on QTL mapping. This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) through projects AGL2010-15694 and AGL2014-59171-R and grants BES-2011-047041 (JT) and RYC-2011-07791 (JG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ibáñez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were carried out.

Additional information

Communicated by R. Toepfer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1. Grapevine accessions evaluated in this studySubmitted as a.xlsx file (XLSX 14 kb)

122_2015_2623_MOESM2_ESM.pdf

Supplementary file 2. Phenotypic distribution of the bunch traits analyzed in this study. Submitted as a.pdf file (PDF 154 kb)

Supplementary file 3. Candidate genes selected for next-generation sequencing. Submitted as a.xlsx file (XLSX 34 kb)

122_2015_2623_MOESM4_ESM.pdf

Supplementary file 4. Quantile–quantile (QQ) plots of observed vs expected –log10(P values) for four different association methods (blue line: GLM; violet line:GLM + Q; red line:MLM + K; green line:MLM + Q + K) for bunch compactness (BuComp), first ramification length (1RmLe) and berries per bunch (ToBeBu) in 2011, 2012 and 2013. Observed P values are expected to nearly follow the expected values, which are shown as a black line. Submitted as a.pdf file (PDF 1107 kb)

122_2015_2623_MOESM5_ESM.pdf

Supplementary file 5. Linkage disequilibrium (LD) among called SNPs. Every matrix represents the LD between the SNPs called per linkage group (LG: Unk, 1-12, 14-19). No SNPs were called for LG13. In each LG, first and last SNPs are indicated at the upper left and lower right corners, respectively (see Table 2 and Supplementary file 3). Every matrix is divided into two triangles: the lower one shows LD (r2), and the upper one represents the P value. Values are graphically shown according to the color code. LD matrixes are not shown at the same scale. Submitted as a.pdf file (PDF 649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tello, J., Torres-Pérez, R., Grimplet, J. et al. Association analysis of grapevine bunch traits using a comprehensive approach. Theor Appl Genet 129, 227–242 (2016). https://doi.org/10.1007/s00122-015-2623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2623-9

Keywords

Navigation