Skip to main content

Perspectives of Plant-Methylotrophic Interactions in Organic Farming

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

Almost all plant functions are directly affected by stress components like adverse climate, drought, temperature, salinity, heavy metals, pesticides, and soil pH, which are considered to be major limiting factors in crop production. Prevalence of intensive infections in crops retards the yield with reduced market acceptance leading to double-headed crisis with the high cost of production and incidence of high level of microbial contamination, including mycotoxin in the end product. Alteration in the agricultural practices is the need of the hour, i.e., switching from synthetics to biological inputs to effectively promote soil fertility, plant tolerance, and crop productivity. Biofertilizers are defined as preparations containing living cells or latent cells of efficient strains of microorganisms that help crop plants’ uptake of nutrients by their interactions in the rhizosphere when applied through seed or soil. They accelerate certain microbial processes in the soil which augment the extent of availability of nutrients in a form easily assimilated by plants. The study of the interactions between plants and their microbial communities is important for developing sustainable management practices. Methylotrophic bacteria occupy different habitats like soil, water, leaf surfaces, nodules, grains, and air due to their great phenotypic plasticity. They can reach populations of 104 to 106 colony-forming units (CFU) per gram of plant tissue. They can function as a plant-beneficial microbe through production of biological active compounds which might explain their capacity to stimulate plant growth and protect them from various pathogens. This chapter discusses the merits of utilizing Methylobacterium as biofertilizers/bioprotectants for crops production and protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abanda-Nkpwatt D, MĂĽsch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57(15):4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspectives. J King Saud Univ – Sci 26:1–20

    Article  Google Scholar 

  • Anandham R, Indiragandhi P, Madhaiyan M, Kim K, Yim W, Saravanan VS, Chung J, Sa T (2007) Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can J Microbiol 53:869–876

    Article  CAS  PubMed  Google Scholar 

  • Andreote FD, Lacava PT, Gai CS, AraĂşjo WL, Maccheroni W Jr, Overbeek LSV, Elsas JDV, Azevedo JL (2006) Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella fastidiosa. NRC Res Press 52:419–426

    CAS  Google Scholar 

  • Andreote FD, Carneiro RT, Salles JF, Marcon J, Labate CA, Azevedo JL, AraĂşjo WL (2009) Culture-independent assessment of Rhizobiales-related Alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microb Ecol 57:82–93

    Article  PubMed  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London

    Google Scholar 

  • AraĂşjo WL, Marcon J, Maccheroni JW, Van Elsas JD, Van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68(10):4906–4914

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ardanov P, Sessitsch A, Haggman H, Kozyrovska N, Pirttila AM (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7(10):e46802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armada E, Portela G, Roldan A, Azcon R (2014) Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 232:640–648

    Article  CAS  Google Scholar 

  • Barnard AML, Bowden SD, Burr T, Coulthurst SJ, Monson RE, Salmond GPC (2007) Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1165–1183

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Bishop YM, Barton LL, Johnson GV (2011) Influence of Methylobacterium on iron translocation in plants. Biometals 24:575–580

    Article  CAS  PubMed  Google Scholar 

  • Bogas AC, Aguilar-Vildoso CI, Camargo-Neves AA, AraĂşjo WL (2016) Effects of growth-promoting endophytic Methylobacterium on development of Citrus rootstocks. Afr J Microbiol Res 10(19):646–653

    Article  CAS  Google Scholar 

  • Bruhn D, Moller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plant 144:201–209

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Martinez J, Lopez-Diaz S, Rodriguez-Garay B (2004) Detection of the effects of Methylobacterium in Agave tequilana Weber Var. azul by laser-induced fluorescence. Plant Sci 166:889–892

    Article  CAS  Google Scholar 

  • Chanprame S, Todd JJ, Widholm JM (1996) Prevention of pink-pigmented methylotrophic bacteria (Methylobacterium mesophilicum) contamination of plant tissues cultures. Plant Cell Rep 16:222–225

    Article  CAS  PubMed  Google Scholar 

  • Chinnadurai C, Balachandar D, Sundaram SP (2009) Characterization of 1-amino cyclopropane-1-carboxylate deaminase producing Methylobacteria from phyllosphere of rice and their role in ethylene regulation. World J Microbiol Biotechnol 25:1403–1411

    Article  CAS  Google Scholar 

  • Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    Article  CAS  PubMed  Google Scholar 

  • Corpe WA, Basile DV (1982) Methanol utilizing bacteria associated with green plants. Dev Ind Microbiol 23:483–493

    Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–250

    Article  CAS  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. Nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from sphagnum bog. Int J Syst Evol Microbiol 52(1):251–261

    Article  CAS  PubMed  Google Scholar 

  • Doronina NV, Trostsenko YA, Kuznetsov BB, Tourova TP, Salkinoja-Salonen MS (2002) Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. In J Syst Evol Microbiol 52(3):773–776

    CAS  Google Scholar 

  • Dourado MN, Ferreira A, AraĂşjo WL, Azevedo JL, Lacava PT (2012) The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals. Biotechnol Res Int 2012:759865

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dourado MN, Bogas AC, Pomini AM, Andreote FD, Quecine MC, Marsaioli AJ, AraĂşjo WL (2013) Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 44(4):331–339

    Article  Google Scholar 

  • Dourado MN, Neves AAC, Santos DS, AraĂşjo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. Biomed Res Int 2015:909016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol: the simplest natural product from plants. Trends Plant Sci 1:296–301

    Article  Google Scholar 

  • Filho SF, Quecin MC, Bogas AC (2012) Endophytic Methylobacteriumextorquens expresses a heterologous -1,4- endoglucanase a (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa. World J Microbiol Biotechnol 28(4):1475–1481

    Article  CAS  Google Scholar 

  • Fradet DT, Tavormina PL, Orphan VJ (2016) Members of the methanotrophic genus Methylomarinum inhabit inland mud pots. Peer J 4:e2116

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism. Appl Environ Microbiol 67:2873–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gai CS, Lacava PT, Quecine MC, Auriac MC, Lopes JR, AraĂşjo WL, Miller TA, Azevedo JL (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. J Microbiol 47:448–454

    Article  PubMed  Google Scholar 

  • Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43(3):195–229

    Article  CAS  Google Scholar 

  • Goldberg I, Rokem JS (1991) Biology of methylotrophs. Butterworth-Heinemann, Madison

    Google Scholar 

  • Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourion B, Francez-Charlot A, Vorholt JA (2008) PhyR is involved in the general stress response of Methylobacterium extorquens AM1. J Bacteriol 190:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Green PN (2001) Methylobacterium. In: Dworkin M (ed) The prokaryotes, Release 3.5, 3rd edn. Springer, New York

    Google Scholar 

  • Green PN (2006) Methylobacterium. In: Dorkin MM, Falkow S, Rosenburg E, Schleifer K-H, Erko-Stackbrandt (eds) The prokaryotes, a handbook on the biology of bacteria, proteobacteria: alpha and beta subclass, vol 5. Springer, New York, pp 257–265

    Google Scholar 

  • Hardoim P, van Overbeek L, van Elsas J (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu Rev Plant Physiol Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Holland MA, Long RLG, Polacco JC (2002) Methylobacterium spp.: phylloplane bacteria involved in cross-talk with the plant host. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere microbiology. APS Press, St Paul

    Google Scholar 

  • Hornschuh M, Grotha R, Kutschera U (2006) Moss-associated Methylobacteria as phytosymbionts: an experimental study. Naturwissenschaften 93(10):480–486

    Article  CAS  PubMed  Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3:137–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Indiragandhi P, Anandham R, Kim KY, Yim WJ (2008) Induction of systemic resistance by modulating ethylene biosynthesis pathway by ACC deaminase containing Methylobacterium oryzae against Pseudomonas syringae in tomato. World J Microbiol Biotechnol 24:1037–1045

    Article  CAS  Google Scholar 

  • Irvine IC, Brigham CA, Suding KN, Martiny JBH (2012) The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat. PLoS One 7(2):e31026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko IA (2001) Aerobic Methylobacteria are capable of synthesizing auxins. Microbiology 70:392–397

    Article  CAS  Google Scholar 

  • Jacob DJ, Field BD, Li Q, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res 110(D08303):1–17

    Google Scholar 

  • Janahiraman V, Anandham R, Kwon SW, Sundaram S, Karthik Pandi V, Krishnamoorthy R, Kim K, Samaddar S, Sa T (2016) Control of wilt and rot pathogens of tomato by antagonistic pink pigmented facultative methylotrophic Delftia lacustris and Bacillus spp. Front Plant Sci 7:1626

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayashree S, Ershath Ali M, Vadivukkarasi P, Seshadri S (2008) Screening of pink pigmented facultative methylotrophs (PPFM’s) for siderophore production. International symposium on microbial biotechnology: diversity, genomics and meta genomics, Association of Microbiologist of India, University of Delhi, New Delhi

    Google Scholar 

  • Jayashree S, Lalitha R, Vadivukkarasi P, Kato Y, Seshadri S (2011a) Cellulase production by pink pigmented facultative methylotrophic strains (PPFMs). Appl Biochem Biotechnol 164:666–680

    Article  CAS  PubMed  Google Scholar 

  • Jayashree S, Vadivukkarasi P, Anand K, Kato Y, Seshadri S (2011b) Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization. Arch Microbiol 193:543–552

    Article  CAS  PubMed  Google Scholar 

  • Jayashree S, Annapurna B, Jayakumar R, Sa T, Seshadri S (2014) Screening and characterization of alkaline protease produced by a pink pigmented facultative methylotrophic (PPFM) strain, MSF 46. J Genet Eng Biotech 12(2):111–120

    Article  Google Scholar 

  • Jayashree S, Vadivukkarasi P, Mayakkannan G, Sundaram S (2016) Population dynamics and seasonal variation of bacterial system utilizing single carbon from river Cooum and river Adyar, Chennai, Tamilnadu, India. Int J Curr Microbiol App Sci 5(3):466–477

    Article  Google Scholar 

  • Joe MM, Saravanan VS, Islam MR, Sa T (2014) Development of alginate-based aggregate inoculants of Methylobacterium sp. and Azospirillum brasilense tested under in vitro conditions to promote plant growth. J Appl Microbiol 116:408–423

    Article  CAS  PubMed  Google Scholar 

  • Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M (2004) Methylobacterium nodulans sp. nov.,for a group of aerobic, facultatively methylotrophic, legume root nodule forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  CAS  PubMed  Google Scholar 

  • Kalyaeva MA, Zacharchenko NS, Doronina NV, Rukavtsova EB, Ivanova EG, Alekseeva VV, Trotsenko YA, Buryanov YI (2001) Plant growth and morphogenesis in vitro is promoted by associative methylotrophic bacteria. Russ J Plant Physiol 48(4):514–517

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, BraĂź M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Yim W, Trivedi P, Madhaiyan M, Deka Boruah HP, Islam MR, Lee G, Sa TM (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper Capsicum annuum L. Plant Soil 327:429–440

    Article  CAS  Google Scholar 

  • Kim K, Kwak C, Lee Y, Sa T (2014) Effect of co-inoculation of Brevibacterium iodinum RS16 and Methylobacteriumoryzae CBMB20 on the early growth of crop plants in Saemangeum reclaimed soil. Korean J Soil Sci Fertil 47:1–7

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotwicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb S (2009) Aerobic methanol-oxidizing bacteria in soil. FEMS Microbiol Lett 300:1–10

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy R, Chauhan PS, Parthiban S, Hong B, Joe MM, Sa T (2011) Co-inoculation effect of Methylobacterium fujisawaense and Azospirillum brasilense CW301 on early growth of rice. Korean J Soil Sci Fertil 5:141–142

    Google Scholar 

  • Kwak M-J, Jeong H, Madhaiyan M, Lee Y, Sa T-M, TK O (2014) Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS One 9(9):e106704

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lacava PT, AraĂşjo WL, Marcon J, Maccheroni JW, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  CAS  PubMed  Google Scholar 

  • Lacava PT, Silva-Stenico ME, Araujo WL (2008) Detection of siderophores in endophytic bacteria Methylobacterium sp. associated with Xylella fastidiosa sub sp. pauca. Pesq Agropec bras Brasilia 43(4):521–528

    Article  Google Scholar 

  • Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2006) Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N2-fixing methylotrophic isolates. Biol Fertil Soils 42(5):402–408

    Article  CAS  Google Scholar 

  • Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol. 2: ecophysiology and biochemistry. Springer-Verlag, New York

    Google Scholar 

  • Loew O (1892) Ueber einen Bacillus, welcher Ameisensäure und Formaldehyd assimilieren kann. Centralbl Bakteriol 12:462–465. (in German)

    Google Scholar 

  • Lopez-Velasco G, Welbaum GE, Boyer RR, Mane SP, Ponder MA (2011) Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J Appl Microbiol 110:1203–1214

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Seshadri S, Chung H, Yang J, Sundaram S, Sa TM (2004) Growth promotion and induction of systemic resistance in rice cultivar co-47 Oryza sativa L. by Methylobacterium sp. Bot Bull Acad Sin 45:315–324

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee HS, Hari K, Sundaram SP, Sa T (2005) Pink pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 Saccharum officinarum L. Biol Fertil Soils 41:350–358

    Article  CAS  Google Scholar 

  • Madhaiyan M, Reddy BV, Anandham R, Senthilkumar M, Poonguzhali S, Sundaram SP, Sa TM (2006) Plant growth promoting Methylobacterium induces defense responses in groundnut Arachis hypogaea L. compared with rot pathogens. Curr Microbiol 53:270–276

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kang BG, Lee YJ, Chung JB, Sa TM (2010) Effect of co-inoculation of methylotrophic Methylobacteriumoryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil 328:71–82

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Lee J-S, Lee K-C (2012) Methylobacterium gossipiicola sp. nov., a pink-pigmented facultative methylotrophic bacteria isolated from cotton phyllosphere. Int J Syst Evol Microbiol 62:162–167

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Chan KM, Ji L (2014) Draft genome sequence of Methylobacterium sp. strain L2-4, a leaf- associated endophytic N-fixing bacterium isolated from Jatropha curcas L. Genome Announc 2:e01306–e01314

    Article  PubMed  PubMed Central  Google Scholar 

  • Madhaiyan M, Alex THH, Ngoh ST, Prithiviraj B, Ji L (2015) Leaf-residing methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnol Biofuels 8:222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics – a review. Curr Sci 83(2):137–145

    CAS  Google Scholar 

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417

    Article  CAS  PubMed  Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ 28(1):42–49

    Article  PubMed  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves. Enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto Penalver CG, Morin D, Cantet F, Saurel O, Milon A, Vorholt JA (2006) Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett 580:561–567

    Article  CAS  PubMed  Google Scholar 

  • Nigris S, Baldan E, Zottini M, Squartini A, Baldan B (2013) Is the bacterial endophyte community, living in Glera (Vitis vinifera) plants, active in biocontrol? In: Schneider C, Leifert C, Feldmann F (eds) Endophytes for plant protection: the state of the art. Deutsche Phytomedizinische Gesellschaft, Braunschweig

    Google Scholar 

  • Omer ZS, Tombolini R, Gerhardson B (2004) Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol Ecol 47(3):319–326

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacilluslipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, Mckeegan KD, Delong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pane C, Celano G, Piccolo A, Villecco D, Spaccini R, Palese AM, Zaccardelli M (2015) Effects of on-farm composted tomato residues on soil biological activity and yields in a tomato cropping system. Chem Biol Technol Agri 2:4

    Article  Google Scholar 

  • Parthiban S, Chauhan PS, Tipayno S, Krishnamoorthy R, Lee S, Sa T (2012) ACC deaminase producing Methylobacteriumoryzae CBMB20 improves plant growth and nodule activity in soybean on co-inoculation with Bradyrhizobium japonicum USDA110. Korean J Soil Sci Fertil 6:47–48

    Google Scholar 

  • Patkowska E (2003) The effect of phyllosphere microorganisms on the healthiness of aboveground parts of soybean (Glycine max (L.) Merrill). Hortorum Cultus 2:65–71

    Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7(5):e1002064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peel D, Quayle JR (1961) Microbial growth on C1 compounds. 1. Isolation and characterization of pseudomonas AM1. Biochem J 81:465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohjanen J, Koski mäkil JJ, Sutela S, Ardanov P, Suorsal M, Niemi K, Sarjala T, Häggman H, Pirttilä AM (2014) Interaction with ectomycorrhizal fungi and endophytic methylobacterium affects nutrient uptake and growth of pine seedlings in vitro. Tree Physiol 34(9):993–1005

    Article  PubMed  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, den Camp HJMO (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  CAS  PubMed  Google Scholar 

  • Pomini AM, Cruz PLR, Gai C, AraĂşjo WL, Marsaioli AJ (2009) Long-chain acyl-homoserine lactones from Methylobacterium mesophilicum: synthesis and absolute configuration. J Nat Prod 72:2130–2134

    Article  CAS  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2007) Production of acyl-homoserine lactone quorum-sensing signals is widespread in gram-negative Methylobacterium. J Microbiol Biotechnol 17:226–233

    CAS  PubMed  Google Scholar 

  • Poorniammal R, Sundaram SP, Kumutha K (2009) In Vitro biocontrol activity of Methylobacterium extorquens against fungal pathogens. Int J Plant Prot 2(1):59–62

    Google Scholar 

  • Poorniammal R, Sundaram SP, Kumutha K (2010) Induced systemic resistance by Methylobacterium extorquens against Rhizoctonia solani in cotton. Int J Plant Protec 2:199–204

    Google Scholar 

  • Prabhu S, Kumar S, Subramanian S, Sundaram SP (2009) Suppressive effect of Methylobacterium fujisawaense against root-knot nematode, Meloidogyne incognita. Indian J Nematol 39(2):165–169

    Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC (2002) Identification of active methylotroph populations in an acidic forest soil by stableisotope probing. Microbiology 148:2331–2342

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Romanovskaya VA, Stolyar SM, Malashenko YR, Dodatko TN (2001) The ways of plant colonization by Methylobacterium strains and properties of these bacteria. Microbiology 70:221–227

    Article  CAS  Google Scholar 

  • Rossetto PB, Dourado MN, Quecine MC, Andreote DF, Welington L, AraĂşjo WL, JoĂŁo L, Azevedo JL, Pizzirani-Kleiner AA (2011) Specific plant induced biofilm formation in Methylobacterium species. Braz J Microbiol 42(3):878–883

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Kima J, Choi O, Kima SH, Park CS (2006) Improvement of capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Article  Google Scholar 

  • Sa T (2006) Plant growth substances produced by Methylobacterium sp. and their effect on the growth of tomato Lycopersicon esculentum L. and red pepper Capsicum annuum L. J Microbiol Biotechnol 16:1622–1628

    Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Envtl Sci Dev 3(1):77–80

    CAS  Google Scholar 

  • Savitha P, Sreenivasa MN, Nirmalnath JP (2015) In vitro screening for biocontrol activity of pink pigmented facultative methylotrophs against phytopathogens. Karnataka J Agric Sci 28(2):286–287

    Google Scholar 

  • Schauer S, Kutschera U (2011) A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant Signal Behav 6(4):510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz RC, Colletti JP, Faltonson RR (1995) Agroforestry opportunities for the United States of America. Agroforestry Sys 31:117–142

    Article  Google Scholar 

  • Semrau JD, DiSpirito AA, Murrell JC (2008) Life in the extreme: thermoacidophilic methanotrophy. Trends Microbiol 16:190–193

    Article  CAS  PubMed  Google Scholar 

  • Seshadri S (2003) Biofertilizers, production, utilization and future prospects. In: Forward edges of microbial resources and development. The Institute of of Microbial Ecology and Resources, Mokwon University, Korea, 19 Nov 2003

    Google Scholar 

  • Shetty PK, Alvares C, Yadav AK (2014) Organic farming and sustainability National Institute of Advanced Studies Indian Institute of Science Campus, Bangalore. ISBN: 978–93–83566–03–7

    Google Scholar 

  • Subhaswaraj P, Jobina R, Parasuraman P, Siddhardha B (2017) Plant growth promoting activity of pink pigmented facultative methylotroph – Methylobacterium extorquens MM2 on Lycopersicon esculentum L. J Appl Biol Biotechnol 5(01):42–46

    Article  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183(1):214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani A, Sahin N, Fujitani Y, Kato A, Sato K, Kimbara K (2015) Methylobacterium species promoting rice and barley growth and interaction specificity revealed with whole-cell matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. PLoS One 10(6):e0129509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Ivanova EG, Doronina NV (2001) Aerobic Methylotrophic bacteria as phytosymbionts. Microbiology 70:623–632

    Article  CAS  Google Scholar 

  • Urakami T, Araki H, Suzuki K, Komogata K (1993) Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov. Int J Syst Bacteriol 43:504–513

    Article  Google Scholar 

  • Vadivukkarasi P (2013) Studies on isolation, characterization and applications of pink pigmented facultative methylotrophs (PPFMs) from diverse environments of Chennai. PhD Dissertation, Shri AMM Murugappa Chettiar Research Centre (MCRC), University of Madras, Tamil Nadu, India

    Google Scholar 

  • Vadivukkarasi P, Priyadarshini M, Karthic R, Jayashree S, Seshadri S (2008) Plant growth regulators in pink pigmented facultative methylotrophs and its effect on in vitro propagation of Spilanthes calva. International symposium on microbial biotechnology: diversity, genomics and meta genomics, association of microbiologist of India, University of Delhi, New Delhi

    Google Scholar 

  • Vadivukkarasi P, Jayashree S, Seshadri S (2014) Studies on the influence of climatic conditions on pH and temperature of southeast coast, Chennai, bay of Bengal. IJE R T 3(8):1478–1482

    Google Scholar 

  • Vadivukkarasi P, Jayashree S, Seshadri S (2015) Population of methanol utilizing bacteria in southeast coast, bay of Bengal, Chennai, Tamil Nadu, India. AARJMD 2(7):2319–2801

    Google Scholar 

  • Vaidehi K, Sekar C (2012) Amino acid conjugated hydroxamate type of siderophore production in Methylobacterium phyllosphaerae MB-5. Cibtech J Microbiol 1:24–30

    Google Scholar 

  • Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61:435–440

    Article  CAS  PubMed  Google Scholar 

  • Ventorino V, Sannino F, Piccolo A, Cafaro V, Carotenuto R, Pepe O (2014) Methylobacterium populi VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation. Sci World J 2014:931793

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol App Sci 3(5):432–447

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Williams CJ, Yavitt JB (2009) Temperate wetland methanogenesis: the importance of vegetation type and root ethanol production. Soil Sci Soc Am J 74:317–325

    Article  CAS  Google Scholar 

  • Yates RJ, Howieson JG, Reeve WG, Nandasena KG, Law IJ, Bra UL, Ardley JK, Nistelberger HM, Real D, O’Hara GW (2007) Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 39:1680–1688

    Article  CAS  Google Scholar 

  • Yim W, Seshadri S, Kim K, Lee G, Sa T (2013) Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium sp. inoculated tomato plants (Lycopersicon esculentum mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 67:95–104

    Article  CAS  PubMed  Google Scholar 

  • Zainol E, Mahmud AW, Sudin M (1993) Effect of intercropping system in surface processes in an acid Ultisol 2. Changes in soil chemical properties and their influence on crop production. J Natural Rubber Res 8(2):124–136

    CAS  Google Scholar 

  • Zhu H, Sun SJ (2008) Inhibition of bacterial quorum sensing-regulated behaviors by Tremella fuciformis extract. Curr Microbiol 57:418–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Shri AMM Murugappa Chettiar Research Centre (MCRC), Tharamani, Chennai, for providing necessary facilities for conducting the research work; Life Sciences Research Board (LSRB), Defence Research Development Organization (DRDO), and Department of Biotechnology, Government of India, for the financial support; Dr. Mary E. Lidstorm, University of Washington, Seattle, for providing the bacterial standard strains; and Dr. P. V. Sujithkumar for the help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seshadri Sundaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponnusamy, V., Shanmugam, J., Gopal, M., Sundaram, S. (2017). Perspectives of Plant-Methylotrophic Interactions in Organic Farming. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_9

Download citation

Publish with us

Policies and ethics