Skip to main content
Log in

Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Thirteen pink-pigmented facultative methylotrophic (PPFM) strains isolated from Adyar and Cooum rivers in Chennai and forest soil samples in Tamil Nadu, India, along with Methylobacterium extorquens, M. organophilum, M. gregans, and M. komagatae were screened for phosphate solubilization in plates. P-solubilization index of the PPFMs grown on NBRIP—BPB plates for 7 days ranged from 1.1 to 2.7. The growth of PPFMs in tricalcium phosphate amended media was found directly proportional to the glucose concentration. Higher phosphate solubilization was observed in four strains MSF 32 (415 mg l−l), MDW 80 (301 mg l−l), M. komagatae (279 mg l−l), and MSF 34 (202 mg l−l), after 7 days of incubation. A drop in the media pH from 6.6 to 3.4 was associated with an increase in titratable acidity. Acid phosphatase activity was more pronounced in the culture filtrate than alkaline phosphatase activity. Adherence of phosphate to densely grown bacterial surface was observed under scanning electron microscope after 7-day-old cultures. Biochemical characterization and screening for methanol dehydrogenase gene (mxaF) confirmed the strains as methylotrophs. The mxaF gene sequence from MSF 32 clustered towards M. lusitanum sp. with 99% similarity. This study forms the first detailed report on phosphate solubilization by the PPFMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-Alla MH (1994) Phosphates and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett Appl Microbiol 18:294–296

    Article  CAS  Google Scholar 

  • Abd-Alla MH, Omar SA (2001) Survival of rhizobia/bradyrhizobia and rock-phosphate solubilizing fungus Aspergillus niger on various carriers from some agroindustrial wastes and their effects on nodulation and growth of faba bean and soyabean. J Plant Nutr 24:261–272

    Article  CAS  Google Scholar 

  • Achal V, Savant VV, Reddy MS (2007) Phosphate solubilization by a wild type strain and UV-induced mutants of Aspergillus tubingensis. Soil Biol Biochem 39:695–699

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, SchaVer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anthony C (1986) Bacterial oxidation of methane and methanol. Adv Microb Physiol 27:113–210

    Article  PubMed  CAS  Google Scholar 

  • Anthony C, Ghosh M, Blake CCF (1994) The structure and function of methanol dehydrogenase and related PQQ-containing quinoproteins. Biochem J 304:665–674

    PubMed  CAS  Google Scholar 

  • Antoun HA, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Babenko YS, Tyrygina G, Grigoryev EF, Dolgikh LM, Borisova TI (1984) Biological activity and physiology-biochemical properties of bacteria dissolving phosphates. Microbiology 53:533–539

    CAS  Google Scholar 

  • Bacilio-Jimenez M, Aguilar-Flores S, Ventura-Zapata E, Perez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  CAS  Google Scholar 

  • Balachandar D, Raja P, Nirmala K, Rithyl TR, Sundaram SP (2008) Impact of transgenic Bt-cotton on the diversity of pink-pigmented facultative methylotrophs. World J Microbiol Biotechnol 24(10):2087–2095

    Article  CAS  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil is influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Barroso CB, Nahas E (2005) The status of soil phosphate fractions and the ability of fungi: dissolve hardly soluble phosphates. Appl Soil Ecol 29:73–83

    Article  Google Scholar 

  • Bergey DH, Krieg NE, Holt JG (1984) Bergey’s manual of systematic bacteriology.Williams and Wilkins, Baltimore, MA

  • Chabot R, Antoun H, Cescas MP (1993) Stimulation de la croissance du mais et de la laitue romaine par desmicroorganismes dissolvent le phosphore inorganic. Can J Microbiol 39:941–947

    Article  Google Scholar 

  • Chatli AS, Beri V, Sidhu BS (2008) Isolation and characterisation of phosphate solubilizing microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian J Microbiol 48:267–273

    Article  CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Cherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biol Biochem 34(4):487–499

    Article  CAS  Google Scholar 

  • Chistoserdova L, Wei Chen S, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185(10):2980–2987

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and waste water. American public health association, Baltimore, MA

    Google Scholar 

  • De Freitas JR, Banerjee NR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology. Marcel Dekker, New York, Basel

    Google Scholar 

  • Fasim F, Ahmed N, Parson R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  PubMed  CAS  Google Scholar 

  • Galabova D, Tuleva B, Balasheva M (1993) Phosphatase activity during growth of Yarrowia lipolytica. FEMS Microbiol Lett 109(1):45–48

    Article  PubMed  CAS  Google Scholar 

  • Gallego V, Garcıa MT, Ventosa A (2005) Methylobacterium isbiliense sp. nov: isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 55:2333–2337

    Article  PubMed  CAS  Google Scholar 

  • Gallego V, Garcia MT, Ventosa A (2006) Methylobacterium adhaesivum sp. nov: a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342

    Article  PubMed  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulose activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am J Altern Agricult 1:57–65

    Google Scholar 

  • Goldstein AH, Braverman K, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol 30:295–300

    Article  PubMed  CAS  Google Scholar 

  • Green PN (1992) The genus Methylobacterium. In the prokaryotes. Springer, NY

    Google Scholar 

  • Green PN (2001) Methylobacterium. In the prokaryotes. Springer, NY

    Google Scholar 

  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharya P, Chakrabarty PK (1990) Solubilization of rock phosphate by rhizobium and bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Chakraborthy PK (1991) Solubilizing of inorganic phosphates by bradyrhizobium. Indian J Exp Biol 29:28–31

    CAS  Google Scholar 

  • Hamdali H, Smirnov A, Esnault C, Ouhdouch Y, Virolle MJ (2010) Physiological studies and comparative analysis of rock phosphate solubilization abilities of Actinomycetales originating from moroccan phosphate mines and of Streptomyces lividans. Appl Soil Ecol 44(1):24–31

    Article  Google Scholar 

  • Harrold SA, Tabatabai MA (2006) Release of inorganic phosphorus from soils by low-molecular-weight organic acids. Commun Soil Sci Plant Anal 37:1233–1245

    Article  CAS  Google Scholar 

  • Horz HP, Yimga MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67:4177–4185

    Article  PubMed  CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Illmer H, Schinner F (1995) Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Illmer H, Barbato A, Schinner F (1995) Solubilization of hardly soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270

    Article  CAS  Google Scholar 

  • Islam MDT, Deora A, Hashidoko Y, Rahman A, Ito T, Tahara S (2007) Isolation and Identification of potential phosphate solubilizing bacteria from the rhizosphere of Oryzae sativa L. cv. BR29 of Bangladesh. Z Natureforsch 62:103–110

    CAS  Google Scholar 

  • Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Darrah PR (1993) Resorption of organic compounds by roots of zea mays L. and its consequences in the rhizosphere. Plant Soil 153:47–59

    Article  CAS  Google Scholar 

  • Juma NG, Tabatabai MA (1988) Phosphatase activity in corn and soybean roots: conditions for assay and effects of metals. Plant Soil 107:39–47

    Article  CAS  Google Scholar 

  • Kato N, Yurimoto H, Thauer RK (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70:10–21

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture: a review. Agron Sustain Dev 26:1–15

    Article  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  • Kpomblekou A, Tabatabai MA (1994) Effect of organic acids on the release of phosphorus from phosphate rocks. Soil Sci 158:442–448

    Article  Google Scholar 

  • MacAlister TJ, Irvin RT, Costerton JW (1977) Cell envelope protection of alkaline phosphatase against acid denaturation in Escherichia coli. J Bacteriol 130(1):339–346

    PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poohguzhali S, Kwon SW, Sa TM (2009) Methylobacterium phyllosphaerae sp. nov: a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27

    Article  PubMed  CAS  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  PubMed  CAS  Google Scholar 

  • Murrell JC, Mc Donald IR, Bourne DG (1998) Molecular methods for the study of methanotroph ecology. FEMS Microbiol Ecol 27:103–114

    Article  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  PubMed  CAS  Google Scholar 

  • Ozkanca R, Flint KP (1996) Alkaline phosphatase activity of Escherichia coli starved in sterile lake water microcosms. J Appl Bacteriol 80:252–258

    PubMed  CAS  Google Scholar 

  • Pal SS (1998) Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    Article  CAS  Google Scholar 

  • Patt TE, Cole GC, Hanson RS (1976) Methylobacterium: a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229

    Article  CAS  Google Scholar 

  • Perez E, Sulbaran M, Ball MM, Yarzabal LA (2007) Isolation and characterization of mineral phosphate solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  CAS  Google Scholar 

  • Pinenborg JWM, Lie TA, Zehnder AJB (1990) Simplified measurement of soil pH using an agar-contact technique. Plant Soil 126:155–160

    Article  Google Scholar 

  • Premono Edi M, Moawad MA, Vlek PLG (1996) Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Crop Sci 11:13–23

    Google Scholar 

  • Richardson AE, Hadodas PA (1997) Soil isolates of Pseudomonas sp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  PubMed  CAS  Google Scholar 

  • Rodrıguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sawyer J, Creswell J (2000) Integrated crop management. In phosphorus basics. Iowa State University, Ames, Iowa

    Google Scholar 

  • Scheffer F, Schachtschabel P (1988) Lehrbuch der Bodenkunde. Enke, Stuttgart

    Google Scholar 

  • Seshadri S (1995) Phosphate solubilizing fungi from Thanjavur delta, South India. PhD thesis, Bharathidasan University, Tiruchirappalli, India

  • Seshadri S, Lakshminarasimhan C (2003) Population dynamics of P-solubilizers in the rhizosphere of major weed species from a tropical delta soil. First Int Meet Microb Phosphate Solub., Developments in Plant and Soil Sciences 102:281–284

    Google Scholar 

  • Seshadri S, Muthukumarasamy R, Lakshminarasimhan C, Ingacimuthu S (2000) Solubilization of inorganic phosphates by Azospirillum halopraeferens. Curr Sci 79(5):565–567

    CAS  Google Scholar 

  • Seshadri S, Ignacimuthu S, Lakshminarsimhan C (2002) Variation in heterotrophic and phosphate solubilizing bacteria from Chennai, southeast coast of India. Indian J Mar Sci 31:69–72

    CAS  Google Scholar 

  • Seshadri S, Ignacimuthu S, Lakshminarasimhan C (2004) Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergilus niger strains. Chem Eng Commun 191:1043–1052

    Article  CAS  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43–49

    Article  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcıa N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed  CAS  Google Scholar 

  • Tarafdar JC, Bareja M, Panwar J (2003) Efficiency of some phosphatase producing soil fungi. Indian J Microbiol 43:27–32

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Van Wezel GP, Mahr K, Konig M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F (2005) GlcP constitutes the major glucose uptake system of streptomyces coelicolor A3(2). Mol Microbiol 55:624–636

    Article  PubMed  Google Scholar 

  • Vassileva M, Vassilev N, Azcon R (1998) Rock phosphate solubilization by Aspergillus niger on olive cake-based medium and its further application in a soil plant system. World J Microbiol Biotech 14:281–284

    Article  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang X, Sahr F, Xue T, Sun B (2007) Methylobacterium salsuginis sp. nov: isolated from seawater. Int J Syst Evol Microbiol 57(8):1699–1703

    Article  PubMed  CAS  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorous in water and NaHCO3 extracts from soil. Soil Sci Soc Am Proc 29:677–678

    Article  CAS  Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665

    Article  CAS  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Zhao XR, Lin QM, Li BG (2002) The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiol Sin 42:236–241 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Life Sciences Research Board, DRDO, India, and Department of Biotechnology, Government of India for financial support, Dr. Mary E. Lidstorm, University of Washington, Seattle, for providing the bacterial strain, and Shri AMM Murugappa Chettiar Research Center for providing necessary facilities. The authors gratefully acknowledge Dr. Gerry Brennan and Ms. Sharon Elizhabeth, Queens University, Belfast, UK, for their help in scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Seshadri.

Additional information

Communicated by Ursula Priefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayashree, S., Vadivukkarasi, P., Anand, K. et al. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization. Arch Microbiol 193, 543–552 (2011). https://doi.org/10.1007/s00203-011-0691-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0691-z

Keywords

Navigation