Skip to main content
Log in

Cellulase Production by Pink Pigmented Facultative Methylotrophic Strains (PPFMs)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pink pigmented facultative methylotrophs (PPFM) isolated from water samples of Cooum and Adyar rivers in Chennai and soil samples of forests located in various districts of Tamil Nadu, India were screened for cellulase production using carboxymethylcellulose agar (CMC agar) medium. The strains showed wide variations in the production of clearing zones around the colonies on CMC agar medium flooded with Congo red. CMCase and filter paper assays were used to quantitatively measure the cellulase activity of 13 PPFM strains. Among the strains, Methylobacterium gregans, MNW 60, MHW 109, MSF 34, and MSF 40 showed cellulolytic activity ranging from 0.73 to 1.16 U mL−1 with wide temperature (35–65°C) and pH (5 to 8) tolerance. SDS-PAGE analysis of the crude enzyme of PPFM strain MNW 60 exhibited several protein bands, and zymogram analysis revealed two dimeric cellulase bands with molecular mass of ~92 and 42 kDa. Scanning electron microscopic studies revealed significant morphological differences between the cells grown in normal and CMC amended medium. The strain MNW 60 was identified as Methylobacterium sp. based on biochemical, physiological, and morphological analyses, and the methylotrophic nature was authenticated by the presence of mxaF gene, encoding methanol dehydrogenase as a key indicator enzyme of methylotrophs, with 99% similarity to Methylobacterium lusitanum. With the 16S ribosomal RNA sequence showing 97% similarity to M. lusitanum strain MP2, this can be proposed as a novel taxon of the genus Methylobacterium. The study forms the first detailed report on the extracellular cellulase production by pink pigmented Methylobacterium sp., and it is expected that this might be the basis for further studies on cellulase production by PPFMs to explore the molecular mechanism, strain improvement, and large-scale cellulase production for its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Journal of Scientific and Industrial Research, 64, 832–844.

    CAS  Google Scholar 

  2. Olsson, L., & Hahn-Hagerdahl, B. (1997). Enzyme and Microbial Technology, 18, 312–331.

    Article  Google Scholar 

  3. Levy, I., Shani, Z., & Shoseyov, O. (2002). Biomolecular Engineering, 19, 17–30.

    Article  CAS  Google Scholar 

  4. Van Wyk, J. P. H., & Mohulatsi, M. (2003). Bioresource Technology, 86, 21–23.

    Article  Google Scholar 

  5. Nipa, M. N., Sultana, S., & Hakim, M. A. (2006). Bangladesh Journal of Microbiology, 23(2), 174–176.

    Google Scholar 

  6. Gosh, B. K., Gosh, A., & Salnar, A. (1987). In J. Chaloupka & V. Krumphanzl (Eds.), Extracellular enzymes of microorganisms: Cellulase secretion from a hypercellulolytic mutant (pp. 157–172). New York: Plenum.

    Google Scholar 

  7. Lynd, R. L., Weimer, J. P., Van Zyl, H. W., & Pretorius, S. I. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  8. Chistoserdova, L., Chen, S. W., Lapidus, A., & Lidstrom, M. E. (2003). Journal of Bacteriology, 185(10), 2980–2987.

    Article  CAS  Google Scholar 

  9. Nemecek-Marshall, M., MacDonald, R. C., Franzen, J. J., Wojciechowski, C. L., & Fall, R. (1995). Plant Physiology, 108, 1359–1368.

    CAS  Google Scholar 

  10. Idris, R., Kuffner, M., Bodrossy, L., Puschenreiter, M., Monchy, S., Wenzel, W. W., et al. (2006). Systematic and Applied Microbiology, 29, 634–644.

    Article  CAS  Google Scholar 

  11. Madhaiyan, M., Park, M. S., Lee, H. S., Kim, C. W., Lee, K. H., Seshadri, S., et al. (2004). Korean Journal of Soil Science and Fertilizer, 37(1), 46–53.

    CAS  Google Scholar 

  12. Raja, P., Balachandar, D., & Sundaram, S. P. (2008). Biology and Fertility of Soils, 45, 45–53.

    Article  Google Scholar 

  13. Balachandar, D., Raja, R., & Sundaram, S. P. (2008). Brazilian Journal of Microbiology, 39, 68–73.

    Article  Google Scholar 

  14. Kim, B. H., & Wimpenny, J. W. T. (1981). Canadian Journal of Microbiology, 27, 1260–1266.

    Article  Google Scholar 

  15. Mandels, M., Andreotti, R., & Roche, C. (1976). Biotechnology Biogen Symposium, 6, 21–31.

    CAS  Google Scholar 

  16. Miller, G. C. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  17. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Lee, S., Morikawa, M., Takagi, M., & Imankawa, T. (1994). Applied and Environmental Microbiology, 60, 3761–3773.

    Google Scholar 

  19. Saul, D. J., Williams, L. C., Grayling, R. A., Chamley, L. W., Love, D. R., & Bergquist, P. L. (1990). Applied and Environmental Microbiology, 56, 3117–3124.

    CAS  Google Scholar 

  20. Bergy. (1984). Bergey’s manual of systematic bacteriology. Baltimore: Williams & Wilkins.

    Google Scholar 

  21. Norris, J.R., & Ribbons, D.W. (1972) (Eds.). Methods in microbiology. London: Academic.

  22. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  23. Murrell, J. C., Mc Donald, I. R., & Bourne, D. G. (1998). FEMS Microbiology Ecology, 27, 103–114.

    Article  CAS  Google Scholar 

  24. Horz, H. P., Tchawa, Y. M., & Liesack, W. (2001). Applied and Environmental Microbiology, 67, 4177–4185.

    Article  CAS  Google Scholar 

  25. Christner, B. C., Mosley-Thompson, E., Thompson, L. G., & Reeve, J. N. (2001). Environmental Microbiology, 3, 570–577.

    Article  CAS  Google Scholar 

  26. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acid Program Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  27. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  28. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  29. Bhat, M. K., & Bhat, S. (1997). Biotechnology Advances, 15(3–4), 583–620.

    Article  CAS  Google Scholar 

  30. Jang, H. D., & Chen, K. S. (2003). World Journal of Microbiology & Biotechnology, 19, 263–268.

    Article  CAS  Google Scholar 

  31. Alani, F., Anderson, W. A., & Moo-Young, M. (2008). Biotechnology Letters, 30, 123–126.

    Article  CAS  Google Scholar 

  32. Jang, H., & Chang, K. (2005). Biotechnology Letters, 27, 239–242.

    Article  CAS  Google Scholar 

  33. Bischoff, K. M., Rooney, P. A., Li, X.-L., Liu, S., & Hughes, S. R. (2006). Biotechnology Letters, 28, 1761–1765.

    Article  CAS  Google Scholar 

  34. Hulme, M. A., & Stranks, D. W. (1970). Nature, 226, 469–470.

    Article  CAS  Google Scholar 

  35. Zverlov, V. V., Velikodvorskaya, G. V., Schwarz, W. H. J., Bronnenmeier, K., Kellermann, J., & Staudenbauer, W. L. (1998). Journal of Bacteriology, 180, 3091–3099.

    CAS  Google Scholar 

  36. Belghith, H., Semia, E.-C., & Gargouri, A. (2001). Journal of Bacteriology, 89, 257–262.

    CAS  Google Scholar 

  37. Lakshmikant, K., & Mathur, S. N. (1990). World Journal of Microbiology & Biotechnology, 11, 23–26.

    Google Scholar 

  38. Immanuel, G., Dhanusa, R., Prema, P., & Palavesam, A. (2006). International Journal of Environmental Science and Technology, 3(1), 25–34.

    CAS  Google Scholar 

  39. Reinhold-Hurek, B., Hurek, T., Claeyssens, M., & Van Montagu, M. (1993). Journal of Bacteriology, 175(21), 7056–7065.

    CAS  Google Scholar 

  40. Belghith, H., Chaabouni, S. E., & Gargouri, A. (2001). Journal of Bacteriology, 89, 257–262.

    CAS  Google Scholar 

  41. Emtiazi, G., Pooyan, M., & Shamalnasab, M. (2007). World Journal of Agricultural Sciences, 3(5), 602–608.

    Google Scholar 

  42. Chakraborty, N., Sarkar, G. M., & Lahiri, S. C. (2000). The Environmentalist, 20, 9–11.

    Article  Google Scholar 

  43. Mawadza, C., Hatti-Kaul, R., Zvauya, R., & Mattiasson, B. (2000). Journal of Biotechnology, 83, 177–187.

    Article  CAS  Google Scholar 

  44. Coral, G., Arikan, B., Unaldi, M. N., & Guvenmez, H. (2002). Turkish Journal of Biology, 26, 209–213.

    CAS  Google Scholar 

  45. Bakare, M. K., Adewalw, I. O., Ajayi, A. O., Okoh, A. I., & Shonukan, O. O. (2005). African Journal of Biotechnology, 4(8), 838–843.

    CAS  Google Scholar 

  46. Immanuel, G., Bhagavath, C. M. A., Raj, P. I., Esakkiraj, P., & Palavesam, A. (2007). The Internet Journal of Microbiology, 3(1), 1–12.

    Google Scholar 

  47. Dutta, T., Sahoo, R., Sengupta, R., Ray, S. S., Bhattacharjee, A., & Ghosh, S. J. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 275–282.

    Article  CAS  Google Scholar 

  48. Sanchez-Torres, J., Perez, P., & Santamaria, R. I. (1996). Applied Microbiology and Biotechnology, 46, 149–155.

    Article  CAS  Google Scholar 

  49. Bragger, J. M., Daniel, R. M., Coolbear, T., & Morgan, H. W. (1989). Applied Microbiology and Biotechnology, 31, 556–561.

    Article  CAS  Google Scholar 

  50. Singh, R., Kumar, R., Bishnoi, K., & Bishnoi, R. N. (2009). Biochemical Engineering, 48, 28–35.

    Article  CAS  Google Scholar 

  51. Okeke, B. C., & Patterson, A. (1992). World Journal of Microbiology & Biotechnology, 8, 483–487.

    Article  CAS  Google Scholar 

  52. Bronnenmeier, K., & Staudenbauer, W. L. (1988). Applied Microbiology and Biotechnology, 27, 432–436.

    CAS  Google Scholar 

  53. Hreggvidsson, G. O., Kaiste, E., Holst, E., Eggertssonh, G., Palsdottir, A., & Kristjansson, J. K. (1996). Applied and Environmental Microbiology, 62(8), 3047–3049.

    CAS  Google Scholar 

  54. Wang, W., Liu, J., Chen, G., Zhang, Y., & Gao, P. (2003). Current Microbiology, 46, 371–379.

    Article  Google Scholar 

  55. Huang, X. P., & Monk, C. (2004). World Journal of Microbiology & Biotechnology, 20, 85–92.

    Article  CAS  Google Scholar 

  56. Hong, S.-Y., Lee, J.-S., Cho, K.-M., Math, R. K., Kim, Y.-H., Hong, S.-J., et al. (2007). Biotechnology Letters, 29, 931–936.

    Article  CAS  Google Scholar 

  57. Kim, E. S., Lee, H. J., Bang, W. G., Choi, I. G., & Kim, K. H. (2009). Biotechnology and Bioengineering, 102, 1342–1353.

    Article  CAS  Google Scholar 

  58. Lamed, R., Setter, E., Kenig, R., & Bayer, E. A. (1983). Biotechnology and Bioengineering, 13, 163–181.

    CAS  Google Scholar 

  59. Fukumori, F., Kudo, T., & Horikoshi, K. (1985). Journal of General Microbiology, 131, 3339–3345.

    CAS  Google Scholar 

  60. Jayashree, S., Vadivukkarasi, P., Anand, K., Kato, Y., & Seshadri, S. (2010) Archives of Microbiology, ArchMicr-2010-0079.R2.

  61. Bayer, E. A., Setter, E., & Lamed, R. (1985). Journal of Bacteriology, 163, 552–559.

    CAS  Google Scholar 

  62. Lamed, R., Naimark, J., Morgenstern, E., & Bayer, E. A. (1987). Journal of Bacteriology, 169(8), 3792–3800.

    CAS  Google Scholar 

  63. Bayer, E. A., Shimon, L. J., Shoham, Y., & Lamed, R. J. (1998). Journal of Structural Biology, 124, 221–234.

    Article  CAS  Google Scholar 

  64. Blair, B. G., & Anderson, K. L. (1998). Biotechnic & Histochemistry, 73, 107–113.

    Article  CAS  Google Scholar 

  65. Bayer, E. A., & Lamed, R. (1986). Journal of Bacteriology, 167, 828–836.

    CAS  Google Scholar 

  66. Pason, P., Kyu, K. L., & Ratanakhanokchai, I. (2006). Applied and Environmental Microbiology, 72, 2483–2490.

    Article  CAS  Google Scholar 

  67. Louime, C., Abazinge, M., & Johnson, E. (2006). International Journal of Molecular Sciences, 7, 1–11.

    Article  CAS  Google Scholar 

  68. Wilson, D. B., Lao, G., Ghangas, G. S., & Jung, E. (1991). Journal of Bacteriology, 173, 3397–3407.

    Google Scholar 

  69. Green, P. N. (1992). In A. Balows, H. G. Truper, M. Dworkin, W. Harder, & K.-H. Schleifer (Eds.), The prokaryotes: The genus Methylobacterium (2nd ed.). New York: Springer.

    Google Scholar 

  70. Green, P. N., & Bousfield, I. J. (1983). International Journal of Systematic Bacteriology, 33, 875–877.

    Article  Google Scholar 

  71. Green, P. N. (2001). In M. Dworkin (Ed.), The prokaryotes: Methylobacterium (3rd ed.). New York: Springer.

    Google Scholar 

  72. Wang, X., Sahr, F., Ting, X., & Baolin, S. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 1699–1703.

    Article  CAS  Google Scholar 

  73. Vuilleumier et al. (2010) putative cellulase, endoglucanase (celC) [Methylobacterium extorquens AM1] unpublished data in NCBI gene database.

Download references

Acknowledgments

The authors thank the Life Sciences Research Board, DRDO, and the Department of Biotechnology, Government of India for financial support; Dr. Mary E. Lidstorm, University of Washington, Seattle for providing the bacterial strain; and Shri AMM Murugappa Chettiar Research Centre for providing the necessary facilities. The authors gratefully acknowledge Dr. Gerry Brennan and Ms. Sharon Elizhabeth, Queens University, Belfast, UK for their help in scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Seshadri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayashree, S., Lalitha, R., Vadivukkarasi, P. et al. Cellulase Production by Pink Pigmented Facultative Methylotrophic Strains (PPFMs). Appl Biochem Biotechnol 164, 666–680 (2011). https://doi.org/10.1007/s12010-011-9166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9166-6

Keywords

Navigation