Skip to main content
Log in

Endophytic Methylobacterium extorquens expresses a heterologous β-1,4-endoglucanase A (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquensX. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreote FD, Lacava PT, Gai CS, Araújo WL, Overbeek LSV, Elsas JDV, Azevedo JL (2006) Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella fastidiosa. Can J Microbiol 52:419–426. doi:10.1139/W05-142

    Article  CAS  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W Jr, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914. doi:10.1128/AEM.68.10.4906-4914.2002

    Article  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292. doi:10.1034/j.1399-3054.1998.1040217.x

    Article  CAS  Google Scholar 

  • Chang CJ, Garnier M, Zreik L, Rossetti V, Bové JM (1993) Culture and serological detection of the xylem-limited bacterium causing citrus variegated chorosis and its identification as a strain of Xylella fastidiosa. Curr Microbiol 27:137–142. doi:10.1007/BF01576010

    Article  CAS  Google Scholar 

  • da Silva FR, Vettore AL, Kemper EL, Leite A, Arruda P (2001) Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity. FEMS Microbiol Lett 203:165–171. doi:10.1111/j.1574-6968.2001.tb10836.x

    Article  CAS  Google Scholar 

  • Davis MJ, French WJ, Schaad NW (1981) Axenic culture of bacteria associated with phony disease of peach and plum leaf. Curr Microbiol 6:309–324. doi:10.1007/BF01566883

    Article  Google Scholar 

  • Durvasula RV, Sundaram RK, Cordon-Rosales C, Pennington P, Beard BC (2003) Rhodnius prolixus and its symbiont, Rhodococcus rhodnii: a model for paratransgenic control of disease transmission. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Boca Raton, pp 83–95

    Google Scholar 

  • Figueira MM, Laramee L, Murrell JC, Groleau D, Miguez CB (2000) Production of green fluorescent protein by the methylotrophic bacterium Methylobacterium extorquens. FEMS Microbiol Lett 193:195–200. doi:10.1111/j.1574-6968.2000.tb09423.x

    Article  CAS  Google Scholar 

  • Gai CS, Lacava PT, Quecine MC, Auriac MC, Lopes JRS, Araújo WL, Miller TA, Azevedo JL (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratansgenic control strategy of Citrus Variegated Chlorosis. J Microbiol 47:448–454. doi:10.1007/s12275-008-0303-z

    Article  Google Scholar 

  • Guzzo SD, Harakava R, Kida K, Martins EMF, Roveratti DS (1999) Proteção de cafeeiros contra Hemileia vastatrix por cloreto de benzalcônio (composto de amônio quaternário). Summa Phytopathol 25:339–345

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Kang Y, Saile E, Schell MA, Denny TP (1999) Quantitative immunofuorescence of regulated EPS gene expression in single cells of Ralstonia solanacearum. Appl Environ Microbiol 65:2356–2362

    CAS  Google Scholar 

  • Kraus TE, McKersie BD, Fletcher RA (1995) Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. J Plant Physiol 145:570–576

    Article  CAS  Google Scholar 

  • Lacava PT, Araújo WL, MaccheroniW Jr, Azevedo JL (2001) RAPD profile and antibiotic ausceptibility of Xylella fastidiosa, causal agent of citrus variegated chlorosis. Lett Appl Microbiol 33:302–306. doi:10.1046/j.1472-765X.2001.01000.x

    Article  CAS  Google Scholar 

  • Lima AOS, Quecine MC, Fungaro MHP, Andreote F, Araújo WL, Silva-Filho MC, Pizzirani-Kleiner AA, Azevedo JL (2005) Molecular characterization of a novel beta-1, 4 endoglucanase from endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol 68:57–65. doi:10.1007/s00253-004-1740-1

    Article  CAS  Google Scholar 

  • Machado MA, Souza AA, Coletta-Filho HD, Kuramae EE, Takita MA (2001) Genome and pathogenicity of Xylella fastidiosa. Mol Biol Today 2:33–43

    CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Sundaram SP, Sa T (2009) Nodulation and plant-growth promotion by methylotrophic bacteria isolated from tropical legumes. Microbiol Res 164:114–120. doi:10.1016/j.micres.2006.08.009

    Article  CAS  Google Scholar 

  • Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiol 147:2065–2075

    CAS  Google Scholar 

  • Miller TA (2007) Symbiotic control in agriculture and medicine. Symbiosis 42:67–74

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plantarum 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nankai H, Hashimoto W, Miki H, Kawai S, Kousaku M (1999) Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1. Appl Environ Microbiol 65:2520–2526

    CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schaad NW, Postnikova E, Lacy G, Fatmi M, Chang CJ (2004) Xylella fastidiosa subspecies: X fastidiosa subsp. piercei, subsp. nov., X fastidiosa subsp. multiplex, subsp. nov., X fastidiosa subsp. pauca, subsp. nov. Syst Appl Microbiol 27:290–300. doi:10.1078/0723-2020-00263

    Article  CAS  Google Scholar 

  • Simpson AJG, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LMC et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151–157. doi:10.1038/35018003

    Article  CAS  Google Scholar 

  • Spiro RG (1966) Analysis of sugars found in glycoproteins. In: Neufeld EF, Ginsburg EF (eds) Methods in enzymology. Academic Press, New York, pp 3–19

    Google Scholar 

  • Sy A, Timmers AC, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252. doi:10.1128/AEM.71.11.7245-7252.2005

    Article  CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  Google Scholar 

  • Toyama H, Anthony C, Lidstrom ME (1998) Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. FEMS Microbiol Lett 166:1–7. doi:10.1111/j.1574-6968.1998.tb13175.x

    Article  CAS  Google Scholar 

  • Tyson GE, Stojanovic BJ, Kuklinski RF, DiVittorio TJ, Sullivan ML (1985) Scanning electron microscopy of Pierce’s disease bacterium in petiolar xylem of grape leaves. Phytopathol 75:264–269

    Article  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483. doi:10.1146/annurev.phyto.36.1.453

    Article  Google Scholar 

  • Zhang Y, Li E, Xiong X, Shen D, Feng Y (2010) Colonization of endophyte Pantoea agglomerans YS19 on host rice, with formation of multicellular symplasmata. World J Microbiol Biotechnol 26:1667–1673. doi:10.1007/s11274-010-0344-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (Proc. no. 98/16262-2) fellowship to M.C.Q. (Proc. no. 2005/53748-6), P.B.R. (Proc. no. 00/13800-5) and W.L.A (Proc. no. 00/10699-1) from FAPESP. We also thank Dr. Elliot W. Kitajima (NAP/MEA/ESALQ) for providing microscopy facilities, Dr. Marianne Figueira (Biotechnology Research Institute, Canada), Dr. Christopher Marxs and Dr. Mary Lidstrom (University of Washington, USA) for discussions and plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welington Luiz Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira Filho, A.S., Quecine, M.C., Bogas, A.C. et al. Endophytic Methylobacterium extorquens expresses a heterologous β-1,4-endoglucanase A (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa . World J Microbiol Biotechnol 28, 1475–1481 (2012). https://doi.org/10.1007/s11274-011-0949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0949-2

Keywords

Navigation