Skip to main content

Advertisement

Log in

Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rock phosphate (RP) is an important natural material traditionally used for the production of phosphorus (P) fertilizers. Compared with chemical treatment, microbial solubilization of RP is an alternative environmentally mild approach. An overview of biotechnological techniques, mainly based on solubilization processes involving agro-industrial residues, is presented. Potential advantages of composting, solid-state fermentation, and liquid submerged fermentation employing free and immobilized microorganisms that produce organic acids and simultaneously solubilize RP are discussed. Subsequent introduction of the final fermented products into soil-plant systems promotes plant growth and P acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aidoo KE, Hendry R, Wood BJB (1982) Solid substrate fermentations. Adv Appl Microbiol 28:201–237

    CAS  Google Scholar 

  • Andrews GF (1990) Large-scale bioprocessing of solids. Biotechnol Prog 6:225–229

    CAS  Google Scholar 

  • Auria R, Hernandez S, Raimbailt M, Revah S (1990) A model support for solid-state fermentation of Aspergillus niger. Biotechnol Tech 4:391–396

    CAS  Google Scholar 

  • Biswas DR, Narayanasamy G (2002) Mobilization of phosphorus from rock phosphate through composting using crop residue. Fert News 47:53–56

    CAS  Google Scholar 

  • Cerezine PC, Nahas E, Banzatto DA (1988) Soluble phosphate solubilization by Aspergillus niger from fluorapatite. Appl Microbiol Biotechnol 29:501–505

    CAS  Google Scholar 

  • Del Campillo SE, Van der Zee SEATM, Torrent J (1999) Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. Eur J Soil Sci 50:391–399

    Article  Google Scholar 

  • Durand A, Ranaud R, Maratay J, Almanza S, Pelletier A (1994) Reactor for sterile solid-state fermentation methods. Patent WO 94/18306

  • Dutton M, Evans C, Atkey P, Wood D (1993) Oxalate production by Basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 39:5–10

    CAS  Google Scholar 

  • Fenice M, Federici F, Vassilev N (2002) Olive mill wastewaters enrichment with soluble phosphate by microbial treatment with Aspergillus niger: potential use in agriculture. In: Proceedings of International Workshop on Water in the Mediterranean Basin: resources and sustainable development, vol 1. 10–13 October 2002, Monastir, Tunisia, pp 206–209

  • Gadd G (1999) Fungal production of citric and oxalic acid: Importance of metal specification, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    CAS  PubMed  Google Scholar 

  • Gaind S, Gaur A (2003) Quality assessment of compost prepared from fly ash and crop residue. Bioresour Technol 87:125–127

    Article  CAS  Google Scholar 

  • Geiger SC, Manu A, Bationo A (1992) Changes in a sandy Sahelain soil following crop residue and fertilizer additions. Soil Sci Soc Am J 56:172–177

    Google Scholar 

  • Ghani A, Rajan SSS, Lee A (1994) Enhancement of rock phosphate solubility through biological processes. Soil Biol Biochem 26:127–136

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. IFA Technical Conference, New Orleans, La., pp 1–21, http://goldsteinlab.alfred.edu/publications.html

  • Gryndler M, Vosatka M, Hrselova H, Chvatalova I, Jansa J (2002) Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate. Appl Soil Ecol 19:279–288

    Article  Google Scholar 

  • Hang YD (1988) Microbial production of citric acid in fixed-bed column bioreactors. Biotechnol Lett 10:421–426

    CAS  Google Scholar 

  • Hang YD, Woodams EE (1984) Apple pomace: a potential substrate for citric acid production by Aspergillus niger. Biotechnol Lett 6:763–764

    CAS  Google Scholar 

  • Hang YD, Woodams EE (1986) Utilization of grape pomace for citric acid production by solid state fermentation. Am J Enol Vitic 37:141–142

    CAS  Google Scholar 

  • Hang YD, Luh BS, Woodams EE (1987) Microbial production of citric acid from kiwi peel. J Food Sci 52:226–227

    CAS  Google Scholar 

  • Iyamuremye F, Dick RP (1996) Organic amendments and phosphorus sorption by soils. Adv Agron 56:139–185

    CAS  Google Scholar 

  • Kpomblekou K, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442–453

    Google Scholar 

  • Kubicek CP, Rohr M (1986) Citric acid fermentation. Crit Rev Biotechnol 3:331–373

    CAS  Google Scholar 

  • Kucey RMN (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 55:2699–2703

    Google Scholar 

  • Kumar V, Singh KP (2001) Enriching vermicompost by nitrogen and phosphate solubilizing bacteria. Bioresour Technol 76:173–175

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Brooks JD, Maddox IS (1997) Citric acid production by solid state fermentation in a packed-bed reactor using Aspergillus niger. Enzyme Microb Technol 21:392–397

    Article  CAS  Google Scholar 

  • Makela M, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white-rot fungi. Enzyme Microb Technol 30:542–549

    Article  CAS  Google Scholar 

  • Milagres AMF, Arantes V, Medeiros CL, Machuca A (2002) Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzyme Microb Technol 30:562–565.

    Article  CAS  Google Scholar 

  • Mitchell DA, Lonsane BK (1992) Definition, characteristics, and potential. In: Doelle HW, Mitchell DA, Rolz CE (eds) Solid substrate cultivation. Elsevier, Amsterdam, pp 1–16

  • Nahas E, Banzatto DA, Assis LC (1990) Fluorapatite solubilization by Aspergillus niger in vinase medium. Soil Biol Biochem 22:1097–1101

    Article  CAS  Google Scholar 

  • Ramana Murthy MV, Karanth NG, Raghava Rao KSMS (1993) Biochemical engineering aspects of solid-state fermentation. Adv Appl Microbiol 38:99–147

    Google Scholar 

  • Rice WA, Olsen PE, Leggett ME (1994) Co-culture of Rhizobium meliloti and a phosphorus-solubilizing fungus (Penicillium bilaji) in sterile peat. Soil Biol Biochem 27:703–705

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  Google Scholar 

  • Rodriquez R, Vassilev N, Azcon R (1999) Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially-treated sugar beet waste. Appl Soil Ecol 11:9–15

    Article  Google Scholar 

  • Rogers RD, Wolfram JH (1993) Microbial solubilization of phosphate. US Patent 5 256 544

    Google Scholar 

  • Roukas T (1998) Citric acid production from carob pod by solid state fermentation. Enzyme Microb Technol 24:54–59

    Article  Google Scholar 

  • Shankaramand VS, Lonsane BK (1994) Ability of Aspergillus niger to tolerate metal ions and minerals in a solid-state fermentation system for the production of citric acid. Process Biochem 29:29–37

    Article  Google Scholar 

  • Shojaosadati SA, Babaeipour V (2002) Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Process Biochem 37:909–914

    Article  CAS  Google Scholar 

  • Singh CP, Amberger A (1991) Solubilization and availability of P during decomposition of rock phosphate enriched straw and urine. Biol Agric Hortic 7:261–269

    Google Scholar 

  • Singh CP, Amberger A (1995) The effect of rock phosphate enriched compost on the yield and phosphorus nutrition of rye grass. Am J Altern Agric 10:82–87

    Google Scholar 

  • Singh CP, Amberger A (1998) Organic acids and phosphorus solubilization in straw composted with rock phosphate. Bioresour Technol 63:13–16

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

  • Tran CT, Mitchell DA (1995) Pineapple waste: a novel substrate for citric acid production by solid state fermentation. Biotechnol Lett 17:1107–1110

    CAS  Google Scholar 

  • Van der Berghe L, Bujumbura C (1996) The effect of Mantogo rock phosphate and urea as compared to di-ammonium phosphate in the composting process and yield of potatoes in the Mugamba region in Burundi. Fert Res 45:51–59

    Google Scholar 

  • Van der Berghe L, Soccol CR, Pandey A, Lebeault JM (2000) Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresour Technol 74:175–178

    Article  Google Scholar 

  • Vassileva M, Vassilev N, Azcon R (1998) Rock phosphate solubilization by Aspergillus niger on olive cake-based medium and its further application in soil-plant system. W J Microbiol Biotechnol 14:281–284

    Article  CAS  Google Scholar 

  • Vassilev N, Baca MT, Vassileva M, Franco I, Azcon R (1995) Rock phosphate solubilization by Aspergillus niger grown on sugar-beet waste medium. Appl Microbiol Biotechnol 44:546–549

    Article  CAS  Google Scholar 

  • Vassilev N, Franco I, Vassileva M, Azcon R (1996) Improved plant growth with rock phosphate solubilized by Aspergillus niger grown on sugar-beet waste. Bioresour Technol 55:237–241

    Article  CAS  Google Scholar 

  • Vassilev N, Fenice M, Federici, Azcon R (1997) Olive mill waste water treatment by immobilized cells of Aspergillus niger and its enrichment with soluble phosphate. Process Biochem 32:617–620

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Fenice M, Federici, Barea JM (1998) Fertilizing effect of microbially treated olive mill wastewater on Trifolium plants. Bioresour Technol 66:133–137

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Fenice M, Federici F (2001) Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresour Technol 79:263–271

    Article  CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Barea JM (2002a) The use of 32P dilution techniques to evaluate the effect of mycorrhizal inoculation on plant uptake of P from products of fermentation mixtures including agrowastes, Aspergillus niger and rock phosphate. In: Assessment of soil phosphorus status and management of phosphoric fertilizers to optimize crop production. International Atomic Energy Agency, TECDOC-1272, Vienna, Austria, http://www-pub.iaea.org/MTCD/publications/ResultsPage.asp

  • Vassilev N, Vassileva M, Medina A, Azcon R (2002b) Fungal solubilization of rock phosphate on media containing agro-industrial wastes. In: Proceedings of Microbial phosphate solubilization. Salamanca, Spain, p 37, http://webcd.usal.es/psm

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

  • Yurekli F, Yesilada O, Yurekli M, Topcuoglu SF (1999) Plant growth hormone production from olive oil mill and alcohol factory wastewaters by white-rot fungi. W J Microbiol Biotechnol 15:503–505

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vassilev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassilev, N., Vassileva, M. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61, 435–440 (2003). https://doi.org/10.1007/s00253-003-1318-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1318-3

Keywords

Navigation