Skip to main content

Control of Fungal Diseases in Agricultural Crops by Chitinase and Glucanase Transgenes

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 22))

Abstract

In agriculture, pathogens cause fungal diseases leading to loss in crop yield and quality. These diseases have been controlled by chemical fungicides. But their effects are often non-specific, targeting beneficial organisms as well as pathogens. The actual crop cultivars have disease responses and in-built genetic resistance against diseases for their defense against fungal pathogens. For instance, chitinases and β-glucanases have been proposed to have a role in fungal cell wall lysis by targeting key macromolecular components of the cell walls, i.e. chitin and β-glucan microfibrils. Chitin does not occur in plants, whereas in many plant-pathogenic fungi chitin comprises of 22–44 % cell wall material and maintains the structural integrity of hyphae. The glucans are structural polymers for maintaining rigidity and conferring protection.

In this chapter we review the targeting mechanism of chitinase, β-glucanase genes with focus on domains and amino acid sequences responsible for antifungal action. The chitinases from Trichoderma spp. are more effective as compared to the corresponding enzymes produced by plants, and against a wider range of pathogens. Site-directed mutagenesis and crystallographic studies led to identification of conserved glutamate residue involved in the catalytic mechanism of chitinases, responsible for hydrolysis of the β-1,4-N-acetyl-D-glucosamine linkages in chitin polymers. Likewise, the amino acid alignment of plant glucanses showed that the conserved region of these enzymes contain a conserved tryptophan residue, which could be involved in the interaction with the glucan substrates and the highly conserved active site located between two glutamate residues participates in cleaving β-1,3- and β-1,4-glycosidic bonds. Cloning and characterization of antifungal genes from plant, non-plant sources encoding the hydrolytic enzymes have confirmed their function in antifungal activities. The progress made in utilizing these genes individually or synergistically for combating fungal diseases in agriculture through transgenesis is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas DE, Abdallah NA, Madkour MM (2009) Production of transgenic tomato plants with enhanced resistance against the fungal pathogen Fusarium oxysporum. Arab J Biotech 12:73–84

    Google Scholar 

  • Abeles FB, Bosshart RT, Forrense LE, Habig WH (1970) Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol 47:129–134

    Article  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, 514 p

    Google Scholar 

  • Ahmad ZM, Hussain I, Muhammad A, Ali S, Ali MG (2012) Factor affecting Agrobacterium-mediated transformation of rice chitinase gene in Solanum tuberosum L. African J of Biotech 11:9716–9723

    CAS  Google Scholar 

  • Aires RS, Steindorff AS, Ramada MHS, Siqueira SJL, Ulhoa CJ (2012) Biochemical characterization of a 27 kDa 1,3-β-D-glucanase from Trichoderma asperellum induced by cell wall of Rhizoctonia solani. Carbohydr Polym 87:1219–1223

    Article  CAS  Google Scholar 

  • Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 99:14434–14439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama T, Pillai MA (2001) Molecular cloning, characterization and in vitro expression of a novel endo-1,3-beta-glucanase up-regulated by ABA and drought stress in rice (Oryza sativa L.). Plant Sci 161:1089–1098

    Article  CAS  Google Scholar 

  • Akiyama T, Pillai MA, Sentoku N (2004) Cloning, characterization and expression of OsGLN2, a rice endo-1,3-betaglucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 220:129–139

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Jin S, Yoshida M, Hoshino T, Opassiri R, Ketudat Cairns JR (2009) Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice Seedlings. J Plant Physiol 166:1814–1825

    Article  CAS  PubMed  Google Scholar 

  • Alonso E, De Carvalho NF, Obregon P, Gheysen G, Inze D, Van Montagu M, Castresana C (1995) Differential in vitro DNA binding activity to a promoter element of the gn1 β-1,3-glucanase gene in hyper sensitively reacting tobacco plants. Plant J 7:309–320

    Article  CAS  PubMed  Google Scholar 

  • Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops 2:104–109

    Article  PubMed  Google Scholar 

  • Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:110–111

    Article  CAS  Google Scholar 

  • Ancillo G, Witte B, Schmelzer E, Kombrink E (1999) A distinct member of the basic (class I) chitinase gene family in potato is specifically expressed in epidermal cells. Plant Mol Biol 39:1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Arulselvi I, Michael P, Umamaheswari S, Krishnaveni S (2010) Agrobacterium mediated transformation of Sorghum bicolor for disease resistance. International J of Pharma and Biosci 1:272–281

    Google Scholar 

  • Asao H, Nishizawa Y, Arai S, Sato T, Hirai M (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotech 14:145–149

    Article  CAS  Google Scholar 

  • Asensio JL, Canada FJ, Siebert HC, Laynez J, Poveda A, Nieto PM, Soedjanaamadja UM, Gabius HJ, Jimenez-Barbero J (2000) Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chem Biol 7:529–543

    Article  CAS  PubMed  Google Scholar 

  • Asghar A, Rashid H, Ashraf M, Haroonkhan M, Chaudhry Z (2007) Improvement of basmati rice against fungal infection through gene transfer technology. Pak J Bot 39:1277–1283

    Google Scholar 

  • Awady-El M, Reda EA, Moghaieb EA, Haggag W, Youssef SS, El-Sharkawy AM (2007) Transgenic canola plants over-expressing bacterial catalase exhibit enhanced resistance to Peronospora parasitica and Erysiphe polygoni. Arab J Biotechnol 11:71–84

    Google Scholar 

  • Bachman ES, McClay DR (1996) Molecular cloning of the first metazoan beta-1,3 glucanase from eggs of the sea urchin Strongylocentrotus purpuratus. Proc Natl Acad Sci USA 93:6808–6813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek JM, Howell CR, Kenerley CM (1999) The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41–50

    Article  CAS  PubMed  Google Scholar 

  • Baisakh N, Datta K, Oliva N, Ona I, Rao JNG (2001) Rapid development of homozygous transgenic rice using anther culture harbouring rice chitinase gene for enhanced sheath blight resistance. Plant Biotech 18:101–108

    Article  CAS  Google Scholar 

  • Bara MT, Lima AL, Ulhoa CJ (2003) Purification and characterization of an exo-β-1,3 glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett 219(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Barber MS, Bertram RE, Ride JP (1989) Chitin oligosaccharides elicit lignifications in wounded wheat leaves. Physiol Mol Plant Pathol 34:3–12

    Article  CAS  Google Scholar 

  • Beerhues L, Kombrink E (1994) Primary structure and expression of mRNAs encoding basic chitinase and 1,3-beta-glucanase in potato. Plant Mol Biol 24:353–367

    Article  CAS  PubMed  Google Scholar 

  • Bolar JP, Norelli JL, Wong KW, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    Article  CAS  PubMed  Google Scholar 

  • Boller T (1985) Induction of hydrolases as a defense reaction against pathogens. In: Key JL, Kosuge T (eds) Cellular and molecular biology of plant stress. Liss, New York, pp. 247–262

    Google Scholar 

  • Boller T (1993) Antimicrobial functions of the plant hydrolysases, chitinases and ß-1,3- glucanases. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer Academic Press, Dordrecht, pp. 391–400

    Chapter  Google Scholar 

  • Bowman S, Churcher C, Badcock K, Brown,D, Chillingworth T, Connor R, Dedman K, Devlin K, Gentles S, Hamlin N, Hunt S, Jagels K, Lye G, Moule S, Odell C, Pearson D, Rajandream M, Rice P, Skelton J, Walsh S, Whitehead S, Barrell B (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature 387:90-93

    Google Scholar 

  • Broekaert WF, Van Parijs J, Allen AK, Peumans WJ (1988) Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol Mol Plant Pathol 33:319–331

    Article  CAS  Google Scholar 

  • Broekaert I, Lee HI, Kush A, Chua NH, Raikhel N (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc Natl Acad Sci USA 87:7633–7637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broekaert WF, Marien W, Terras FRG, De Bolle FC, Proost P, Van Damme J (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31:4308–4314

    Article  CAS  PubMed  Google Scholar 

  • Broglie KE, Biddle P, Cressman R, Broglie R (1989) Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell 1:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Buchel AS, Linthorst HJM (1999) PR-1: a group of plant proteins induced upon pathogen infection. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press/LLC, Boca Raton, pp. 21–47

    Google Scholar 

  • Bushnell WR, Somers DA, Giroux RW, Szabo LJ, Zeyen RJ (1998) Genetic engineering of disease resistance in cereals. Can J Plant Pathol 20:137–149

    Article  Google Scholar 

  • Carsolio C, Gutierrez A, Jimenez B, Van Montagu M, Herrera-Estrella A (1994) Characterization of ech-42, a Trichoderma harzanium endochitinase gene expressed during mycoparasitism. Proc Natl Acad USA 91:10903–10907

    Article  CAS  Google Scholar 

  • Carstens M, Vivier MA, Pretorius IS (2003) The Saccharomyces cerevisiae chitinase, encoded by the CTS1–2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res 12:497–508

    Article  CAS  PubMed  Google Scholar 

  • Castresana C, De Carvalho F, Gheysen G, Habets M, Inze D, Van Montagu M (1990) Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia β-1,3-glucanase gene. Plant Cell 2:1131–1144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catala C, Bennett AB (1998) Cloning and sequence analysis of TomCel8; a new plant endo-beta-1,4-D-glucanase gene, encoding a protein with a putative carbohydrate binding domain (Accession No. AF098292)(PGR98-209). Plant Physiol 118:1535

    Google Scholar 

  • Chai B, Maqbool SB, Hajela RK, Green D, Vargas JM, Warkentin D, Sabzikar R, Sticklen MB (2002) Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brownpatch (Rhizoctonia solani) disease resistant transgenic lines. Plant Sci 163:183–193

    Article  CAS  Google Scholar 

  • Chalavi V, Tabaeizadeh Z, Thibodeau (2003) Enhanced resistance to Verticillium dahliae in transgenic strawberry plants expressing a Lycopersicon chilense chitinase gene. J Amer Soc Hort Sci 128:747–753

    CAS  Google Scholar 

  • Chang MM, Hadwiger LA, Horovitz D (1992) Molecular characterization of a pea β-1,3-glucanase induced by Fusarium solani and chitosan challenge. Plant Mol Biol 20:609–618

    Article  CAS  PubMed  Google Scholar 

  • Chang MM, Culley DE, Hadwiger LA (1993) Nucleotide sequence of a pea (Pisum sativum L.) beta-1,3-glucanase gene. Plant Physiol 101:1121–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang M, Culley D, Choi JJ, Hadwiger LA (2002) Agrobacterium mediated co-transformation of a pea β-1,3-glucanase and chitinase genes in potato (Solanum tuberosum L. cv. Russet Burbank) using a single selectable marker. Plant Sci 163:83–89

    Article  CAS  Google Scholar 

  • Chen RD, Yu LX, Greer AF, Cheriti H, Tabaeizadeh Z (1994) Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Mol Gen Genet 245:195–202

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu A, Zou Z (2006) Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. Russ J Plant Physiol 53:671–677

    Article  CAS  Google Scholar 

  • Chen JY, Xiao R, Lin H-T, Ou M, Kuang J-F, Lu WJ (2009a) Characterization and regulation of multiple forms of endo-1,4-beta-glucanase genes during longan fruit growth and development. Sci Hortic 122(4):550–555

    Article  CAS  Google Scholar 

  • Chen SC, Liu AR, Wang FH, GJ A (2009b) Combined over expression of chitinase and defensin genesin transgenic tomato enhances resistance to Botrytis cinerea. African J of Biotech 8:5182–5188

    CAS  Google Scholar 

  • Cheong YH, Kim CY, Chun HJ, Moon BC, Park HC, Kim JK, Lee SY, Cho MJ (2000) Molecular cloning of a soybean class III β-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci 154:71–81

    Article  CAS  PubMed  Google Scholar 

  • Cherif M, Benhamou N (1990) Cytochemical aspects of chitin breakdown during the parasitic action of Trichoderma spp. on Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathol 80:1406–1414

    Article  CAS  Google Scholar 

  • Chye ML, Cheung KY (1995) β-1,3-glucanase is highly-expressed in laticifers of Hevea brasiliensis. Plant Mol Biol 29:397–402

    Article  CAS  PubMed  Google Scholar 

  • Chye M, Zhao K, He Z, Ramalingam S, Fung K (2005) An agglutinating chitinase with two chitin-binding domains confers fungal protection in transgenic potato. Planta 220:717–730

    Article  CAS  PubMed  Google Scholar 

  • Clarke HR, Davis JM, Wilbert SM, Bradshaw HD Jr. Gordon MP (1994) Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. Plant Mol Biol 25:799-815

    Google Scholar 

  • Cohen-Kupiec R, Broglie KE, Friesem D, Broglie RM, Chet I (1999) Molecular characterization of a novel β-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene 226:147–154

    Article  CAS  PubMed  Google Scholar 

  • Cordero MJ, Raventos D, San Segundo B (1994) Differential expression and induction of chitinases and β-1,3-glucanases in response to fungal infection during germination of maize seeds. Mol Plant Microbe Interact 7:23–31

    Article  CAS  Google Scholar 

  • Cornelissen BJC, Melchers LS (2000) Strategies for control of fungal disease with transgenic plants. Plant Physiol 101:709–712

    Article  Google Scholar 

  • Cornelissen BJC, Schram A (2000) Transgenic approaches to control epidemic spread of diseases. In: Slusarenko AJ, Fraser RSS, Van Loon LC (eds) Mechanism of resistance to plant diseases. Kluwer Academic Publishers, London, pp. 576–599

    Google Scholar 

  • Crute IR, Pink DAC (1996) Genetics and utilization of pathogen resistance in plants. Plant Cell 8:1747–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cupa-Patino JL, Rodriquez J, Reyes F, Perez-Leblic MI (1990) Effect of β-glucanases on Penicillhm oxalicum cell wall fractions. FEMS Microbiol Lett 70:233–240

    Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  CAS  PubMed  Google Scholar 

  • Dana MM, Limón MC, Mejías R, Mach RL, Benítez T, Pintor-Toro JA, Kubicek CP (2001) Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr Genet 38:335–342

    Article  Google Scholar 

  • Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  PubMed Central  CAS  Google Scholar 

  • Danhash N, Wagemakers CA, van Kan JA, de Wit PJ (1993) Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Mol Biol 22:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Das DK, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tiss Organ Cult 109:315–325

    Article  CAS  Google Scholar 

  • Datta K, Koukolikova-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100:832–839

    Article  CAS  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  CAS  PubMed  Google Scholar 

  • De la Cruz J, Llobell A (1999) Purification and properties of a basic endo-β-1,6-glucanase (BGN16.1) from the antagonistic fungus Trichoderma harzianum. Eur J Biochem 265:145–151

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz J, Pintortoro JA, Benitez T, Llobell T, Romero LC (1995) A novel endo-beta-1,3-glucanase, bgn13.1, involved in the mycoparasitism of Trichoderma harzianum. J Bacteriol 177:6937–6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De las Mercedes, Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  CAS  Google Scholar 

  • De Loose M, Alliotte T, Gheysen G, Genetello C, Gielen J, Soetaert P, Van Montagu M, Inze D (1988) Primary structure of a hormonally regulated β-glucanase of Nicotiana lumbaginifolia. Gene 70:13–23

    Article  CAS  PubMed  Google Scholar 

  • Derckel J, Audran J, Haye B, Lambert B, Legendre L (1998) Characterization, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and β-1,3-glucanases of ripening grape berries. Physiol Plant 104:56–64

    Article  CAS  Google Scholar 

  • Distefano G, Malfa SL, Vitale A, Lorito M, Deng Z, Gentile A (2008) Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879

    Article  CAS  PubMed  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoSONE 6:1–15

    Google Scholar 

  • Does MP, Cornelissen BJC (1998) Crop Productivity and Sustainability: Shaping the Future. In: Singh RB, Verma A (eds) ChopraVL. Oxford and IBH, New Delhi, pp. 233–244

    Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2002) Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. In: Van Huylenbroeck J et al. (eds) Proceedings of the XX EUCARPIA symposium on New Ornamentals II, Acta Horticulturae 572, ISHS 2002. Blackwell Publishing Ltd

    Google Scholar 

  • Domingo C, Conejero V, Vera P (1994) Genes encoding acidic and basis class III β-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Mol Biol 24:725–732

    Article  CAS  PubMed  Google Scholar 

  • Dong X (1998) SA, JA, ethylene and disease resistance in plants. Curr Opin Plant Biol 1:316–323

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Mindrinos M, Davis KR, Ausubel FM (1991) Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Tredway LP, Shew HD, Wang G-L, Sivamani E, Qu R (2007) Resistance of transgenic tall fescue to two major fungal diseases. Plant Sci 173:501–509

    Article  CAS  Google Scholar 

  • Donzelli B, Lorito M, Scala F, Harman G (2001) Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase from Trichoderma atroviride (T. harzianum). Gene 277:199–208

    Article  CAS  PubMed  Google Scholar 

  • Draborg H, Christgau S, Halkier T, Rasmussen G, Dalboge H, Kauppinen S (1996) Secretion of an enzymatically active Trichoderma harzianum endochitinase by Saccharomyces cerevisiae. Curr Genet 29:404–409

    Article  CAS  PubMed  Google Scholar 

  • Dujon B, Albermann K, Aldea M, Alexandraki D, Ansorge W, Arino J, Benes V, Bohn C, Bolotin-Fukuhara M, Bordonne R, Boyer J, Camasses A, Casamayor A, Casas C, Cheret G, Cziepluch C, Daignan-Fornier B, Dang DV, de Haan M, Delius H, Durand P, Fairhead C, Feldmann H, Gaillon L, Kleine K (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature 387:98–102

    CAS  PubMed  Google Scholar 

  • Duncan WAM, Manners DJ, Ross AG (1996) Enzyme systems in marine algae. The carbohydrase activities of unfractionated extracts of Cladophora rupestris, Laminaria digitata, Rhodimenia palmate and Ulva lactuca. Biochem J 63:44–51

    Article  Google Scholar 

  • Ebel J, Scheel D (1992) Elicitor recognition and signal transduction. In: Genes involved in plant defense. Springer, New York, pp. 183–205

    Chapter  Google Scholar 

  • Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 57:2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • El-Katany MH, Gudelj M, Robra KH, Elnaghy MA, Gübitz GM (2001) Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56:137–143

    Article  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  CAS  PubMed  Google Scholar 

  • Esfahani K, Motallebi M, Zamani MR, Sohi HH, Jourabchi E (2010) Transformation of potato (Solanum tuberosum cv. Savalan) by chitinase and β-1,3-glucanase genes of mycoparasitic fungi towards improving resistance to Rhizoctonia solani AG-3. Iran J Biotechnol 8:73–81

    CAS  Google Scholar 

  • Esteban PF, Rios I, Garcia R, Duenas E, Pla J, Sanchez M, de Aldana CR, Del Rey F (2005) Characterization of the CaENG1 gene encoding an endo-1,3-beta-glucanase involved in cell separation in Candida albicans. Curr Microbiol 51:385–392

    Article  CAS  PubMed  Google Scholar 

  • Evans IJ, Greenland AJ (1998) Transgenic approaches to disease protection: applications of antifungal proteins. Pestic Sci 54:353–359

    Article  CAS  Google Scholar 

  • Fan J, Wang H, Feng D, Liu B, Liu H, Wang J (2007) Molecular characterization of plantain class i chitinase gene and its expression in response to infection by Gloeosporium musarum Cke and Massee and other abiotic stimuli. J Biochem 142:561–570

    Article  CAS  PubMed  Google Scholar 

  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, Van Dorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133:1935–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fekete C, Weszely T, Hornok L (1996) Assignment of a PCR-amplified chitinase sequence cloned from Trichoderma hamatum to resolved chromosomes of potential biocontrol species of Trichoderma. FEMS Microbiol Lett 145:385–391

    Article  CAS  PubMed  Google Scholar 

  • Flach J, Pilet P-E, Jolles P (1992) What's new in chitinase research? Experientia 48:701–716

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (1991) Cell walls. In: Rose AH, Harrisson JD (eds) The yeast, vol 4. Academic, New York, pp. 199–277

    Google Scholar 

  • Fleet GH, Phaff HI (1981) Fungal glucans-structure and metabolism. In: Tanner W, Loewus FA (eds) Berlin Enyclopedia of Palnt Physiology, 13B, Springer-Verlag, pp 416-440

    Google Scholar 

  • Fontaine T, Simene C, Dubreucq G, Adam O, Delepierre M, Lemoine J (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigates cell wall. J Biol Chem 275:27594–27607

    CAS  PubMed  Google Scholar 

  • Fukuda Y, Ohme M, Shinshi H (1991) Gene structure and expression of a tobacco endochitinase gene in suspension-cultured tobacco cells. Plant Mol Biol 16:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ganesan M, Bhanumathi P, Ganesh Kumari K, Lakshmi Prabha A, Song PS, Jayabalan N (2009) Transgenic Indian Cotton (Gossypium hirsutum) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens. Am J Biochem Biotechnol 5:63–74

    Article  CAS  Google Scholar 

  • Garcia I, Lora IM, De La Cruz J, Benitez T, Llobell A, Pintor-Tom JA (1994) Cloning and characterization of a chitinase (CHIT42) cDNA from the mycoparasitic fungus Trichoderma harzanium. Curr Genet 27:83–89

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Casado G, Collada C, Allona I, Casado R, Pacios LF, Aragoncillo C (1998) Site-directed mutagenesis of active site residues in a class I endochitinase from chestnut seeds. Glycobiology 8:1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Gentile A, Deng Z, La Malfa S (2007) Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126:146–151

    Article  CAS  Google Scholar 

  • Gheysen G, Inze D, Soetaert P, Van Montagu M, Castresana CC (1990) Sequence of a Nicotiana plumbaginifolia beta(1,3)-glucanase gene encoding a vacuolar isoform. Nucleic Acids Res 18:6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giczey G, Kerenyi Z, Dallmann G, Hornok L (1998) Homologous transformation of Trichoderma hamatum with an endochitinase encoding gene, resulting in increased levels of chitinase activity. FEMS Microbiol Lett 165:247–252

    Article  CAS  PubMed  Google Scholar 

  • Giri AP, Harsulkar AM, Patankar AG, Gupta VS, Sainani MN, Deshpande VV, Ranjekar PK (1998) Association of induction of protease and chitinase in chickpea roots with resistance to Fusarium oxysporum f. sp. ciceri. Plant Pathol 47:693–699

    Article  CAS  Google Scholar 

  • Goellner M, Wang X, Davis EL (2001) Endo-beta-1, 4-glucanase expression in compatible plant-nematode Interactions. Plant Cell 13:2241–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546

    Article  CAS  PubMed  Google Scholar 

  • Gooday GW (1971) An audioradiographic study of hyphal growth of some fungi. J Gen Microbiol 67:125–133

    Article  CAS  Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Canadian Jour of Bot 72:1057–1083

    Article  CAS  Google Scholar 

  • Grover A, Gawthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 84:330–340

    Google Scholar 

  • Hamel F, Bellemare G (1993) Nucleotide sequence of a Brassica napus endochitinase gene. Plant Physiol 101:1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanselle T, Barz W (2001) Purification and characterization of the extracellular PR-2b β-1,3-glucanase accumulating in different Ascochyta rabiei-infected chickpea (Cicer arietinum L.) cultivars. Plant Sci 161:773–781

    Article  CAS  Google Scholar 

  • Hassan F, Meens J, Jacobsen H, Kiesecker H (2009) A family 19 chitinase (Chit30) from Streptomyces olivaceoviridis ATCC 11238 expressed in transgenic pea affects the development of T. harzianum in vitro. J Biotechnol 143:302–330

    Article  CAS  PubMed  Google Scholar 

  • Havukkala I (1991) Chitinolytic enzymes and plant pests. Biotechnology in the Philippines Towards the Year 2000. In: LL I, AK R (eds) Proceedings of the second Asia-Pacific Biotechnology Congress. SEARCA, University of the Philippines, Las Banos, pp. 127–140

    Google Scholar 

  • Hayes CK, Klemsdal S, Larito M, Di Pietro A, Peterbauer C, Nakas JP, Tronsmo A, Harman GE (1994) Isolation and sequence of an endochitinase gene from a cDNA library of Trichoderma harzainum. Gene 138:143–148

    Article  CAS  PubMed  Google Scholar 

  • He X, Miyasaka SC, Fitch MM, Moore PH, Zhu YJ (2008) Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep 27:903–909

    Article  CAS  PubMed  Google Scholar 

  • He X, Miyasaka SC, Zou Y, Fitch MMM, Zhu YJ (2010) Regeneration and transformation of taro (Colocasia esculenta) with a rice chitinase gene enhances resistance to Sclerotium rolfsii. Hortscience 45:1014–1020

    Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydroclases based on amino acid sequence similarities. Biochem J 293:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermosa R, Botella L, Keck M, Jimenez JA, MonteroBarrientos M, Arbona V, Gomez Cadenas A, Monte E, Nicolas C (2011) The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Honée G (1999) Engineered resistance against fungal pathogens. Eur J Plant Pathol 105:319–326

    Article  Google Scholar 

  • Huang CJ, Wang TK (2005) Identification of an antifungal chitinase from a potential biocontrol agent. Bacillus cereus 28-9. J Biochem Mol Biol Sci 38:82–88

    CAS  Google Scholar 

  • Huang JK, Wen L, Swegle M, Tran HC, Thin TH, Naylor HM, Muthukrishnan S, Reeck GR (1991) Nucleotide sequence of a rice genomic clone that encodes a class I endochitinase. Plant Mol Biol 16:479–480

    Article  CAS  PubMed  Google Scholar 

  • Hussain I (2007) Development of resistance against fungal pathogens in potato by genetic transformation, Ph D thesis, Arid Agriculture University, Rawalpindi, Pakistan

    Google Scholar 

  • Ignacimuthu S, Ceasar SA (2012) Development of transgenic fingermillet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37:135–147

    Article  CAS  PubMed  Google Scholar 

  • Ignatius SMJ, Chopra RK (1994) Effects of fungal infection and wounding on the expression of chitinase and β-1,3-glucanases in near-isogenic lines of barley. Physiol Plant 90:584–592

    Article  CAS  Google Scholar 

  • Iqbal MM, Nazir F, Ali S, Asif MA, Zafar Y, Iqbal J, Ali GM (2012) Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol 50:129–136

    Article  CAS  PubMed  Google Scholar 

  • Iseli B, Boller T, Neuhaus JM (1993) The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Takahashi K, Takizawa H, Nikaidou N, Tanaka H, Nishihashi H, Watanabe T, Nisfizawa Y (2003) Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to fungal disease. Biosci Biotechnol Biochem 67:847–855

    Article  CAS  PubMed  Google Scholar 

  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D'Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91

    Article  CAS  PubMed  Google Scholar 

  • Jabeen N, Mirza B, Chaudhary Z, Rashid H, Gulfraz M (2009) Study of the factors affecting Agrobacterium mediated gene transformation in tomato (Lycopersicon esculentum Mill.) cv. Riogrande using rice chitinase (CHT-3) gene. Pak J Bot 41:2605–2614

    CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AK, Dry IB, Robinson SP (1999) Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathol 48:325–336

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Delledonne M, Pezzotti M, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jayraj J, Anand A, Muthukrishnan S (2004) Pathogenesis-related proteins and their roles in resistance to fungal pathogen. In: Punja ZK (ed) Fungal disease resistance in plants-biochemistry, molecular biology and genetic engineering. Food Products Press, New York, pp. 139–178

    Google Scholar 

  • Ji C, Norton RA, Wicklow DT, Dowd PF (2000) Isoform patterns of chitinase and β-1,3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milk stage induction. J Agric Food Chem 48:507–511

    Article  CAS  PubMed  Google Scholar 

  • Johnston M, Andrews S, Brinkman R, Cooper J, Ding H, Dover J, Du Z, Favello A, Fulton L, Gattung S (1994) Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science 265:2077–2082

    Article  CAS  PubMed  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongedijk E, Tigelaar H, Van Roekel JSC, Bres-Vloemans SA, Dekker I, van den Elzen PJM, Cornelissen BJC, Melchers LS (1995) Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85:173–180

    Article  CAS  Google Scholar 

  • Jung HW, Hwang BK (2000) Pepper gene encoding a basic β-1,3-glucanase is differentially expressed in pepper tissues upon pathogen infection and ethephon or methyl jasmonate treatment. Plant Sci 159:97–106

    Article  CAS  PubMed  Google Scholar 

  • Kaku H, Shibuya N, Xu PL, Aryan AP, Fincher GB (1997) N-acetylchitooligosaccharides elicit expression of a single (1-3)-β-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiol Plant 100:111–118

    Article  CAS  Google Scholar 

  • Kaomek M, Ketudat-Cairns JR (2009) Expression of Leucaena leucocephala de Wit chitinase in transgenic Koshihikari rice. World Academy of Science, Engineering and Technology 3:11–23

    Google Scholar 

  • Kas HS (1997) Chitosan: Properties preparations and application to micro-encapsulation system. J Microencapsul 14:687–711

    Article  Google Scholar 

  • Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987) Biological function of pathogenesis-related proteins: four PR proteins of tobacco have 1,3-β-glucanase activity. EMBO J 6:3209–3212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keen NT, Yoshikawa M (1983) β-1,3-endoglucanase from soybean releases elicitoractive carbohydrates from fungal cell walls. Plant Physiol 7:460–465

    Article  Google Scholar 

  • Kelemu S, Changshun J, Guixi H, Segura G (2005) Genetic transformation of the tropical forage legume Stylosanthes guianensis with a rice-chitinase gene confers resistance to Rhizoctonia foliar blight disease. African J of Biotech 4:1025–1033

    CAS  Google Scholar 

  • Kern MF, Maraschin SDF, Endt DV, Schrank A, Vainstein MA, Pasquali G (2010) Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Appl Biochem Biotechnol 160:1933–1946

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Khan MS, Ilyas M, Rajab H, Shah SH, Jalal A (2013) Genetic transformation of Brassica napus with the antifungal chitinase gene. Int J Agric Biol 15:933–938

    CAS  Google Scholar 

  • Kheiri HR, Motallebi M, Zamani MR, Deljo A (2014) Beta glucanase (Bgn13.1) expressed in transgenic Brassica napus confers antifungal activity against Sclerotinia sclerotiorum. J Crop Prot 3:31–42

    Google Scholar 

  • Kikkert JR, Ali GS, Wallace PG, Reisch B, Reustle GM (2000) Expression of a fungal chitinase in Vitis vinifera L. ‘Merlot’ and ‘Chardonnay’ plants produced by biolistic transformation. Acta Hort 528:297–303

    CAS  Google Scholar 

  • Kim HB, An CS (2002) Differential expression patterns of an acidic chitinase and a basic chitinase in the root nodule of Elaeagnus umbellate. Mol Plant Microbe Interact 15:209–215

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Baek JM, Park HY, Choi YD (1994) Kim SI. Isolation and characterization of cDNA clones encoding class I chitinase in suspension cultures of rice cell Biosci Biotechnol Biochem 58:1164–1166

    CAS  PubMed  Google Scholar 

  • Kim D, Baek JM, Uribe P, Kenerley CM, Cook DR (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm BH (2003) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12:475–484

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655–662

    Article  CAS  Google Scholar 

  • Kitamura E, Kamei Y (2003) Molecular cloning, sequencing and expression of the gene encoding a novel chitinase A from marine bacterium, Pseudomonas sp. PE2, and its domain structure. Appl Microbiol Biotechnol 61:140–149

    Article  CAS  PubMed  Google Scholar 

  • Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B (2000) Linear β-1,3-glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemsdal SS, Clarke JL, Hoell IA, Eijsink VG, Brurberg MB (2006) Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS Microbiol Lett 256:282–289

    Article  CAS  PubMed  Google Scholar 

  • Ko TS, Lee S, Schaefer SC, Korban SS (2003) Characterization of a tissue-specific and developmentally regulated small beta 1,3-glucanase gene family in Prunus persica. Plant Physiol Biochem 41:955–963

    Article  CAS  Google Scholar 

  • Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. The linkage between chitin and beta(1-3)-glucan. J Biol Chem 270:1170–1178

    Article  CAS  PubMed  Google Scholar 

  • Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata SI (1998) Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim Biophys Acta 1382:80–90

    Article  CAS  PubMed  Google Scholar 

  • Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J of Biotechnol 10:3659–3670

    CAS  Google Scholar 

  • Koshland DE Jr (1953) Stereochemistry and the mechanism of enzymatic reactions. Rev Cambridge Philos Soc 28:416–436

    Article  CAS  Google Scholar 

  • Kovacs G, Sagi L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 22:117–130

    Article  CAS  PubMed  Google Scholar 

  • Kragh KM, Jacobsen S, Mikkelsen JD, Nielsen KA (1993) Tissue specificity and induction of class I, II, and III chitinases in barley (Hordeum vulgare). Physiol Plant 89:490–498

    Article  CAS  Google Scholar 

  • Kubicek CP, Messner R, Cruber F, Mach RL, Kubicek-Pranz EM (1993) The Trichoderma cellulase regulatory puzzle : from the interior life of a secretory fungus. Enzyme Microb Technol vol:1590–1599

    Google Scholar 

  • Kubicek CP et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kullnig C, Mach RL, Lorito M, Kubicek CP (2000) Enzyme diffusion from Trichoderma atroviride (=T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl Environ Microbiol 66:2232–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C (2003) A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165:969–976

    Article  CAS  Google Scholar 

  • Kumar SM, Kumar BK, Sharma KK, Devi P (2004) Genetic transformation of pigeonpea with rice chitinase gene. Plant Breed 123:485–489

    Article  CAS  Google Scholar 

  • Kumar M, Sundaresha S, Sreevathsa R (2009) Resistance to alternaria leaf spot disease in transgenic safflower (Carthamus tictorius L.) harboring a rice chitinase gene. Transgenic Plant J 113-118

    Google Scholar 

  • Kumari A, Sharma G, Bhat S, Bhat RS, Krishnaraj PU, Kuruvinashetti MS (2011) Enhancement of Trichoderma endochitinase secretion in tobacco cell cultures using an α-amylase signal peptide. Plant Cell Tiss and Organ Cult 107:215–224

    Article  CAS  Google Scholar 

  • Lagunes-Fortiz E, Robledo-Paz A, Gutiérrez-Espinosa MA, Mascorro-Gallardo JO, Espitia-Rangel E (2013) Genetic transformation of garlic (Allium sativum L.) with tobacco chitinase and glucanase genes for tolerance to the fungus Sclerotium cepivorum. African J Biotechnol 12:3482–3492

    CAS  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology 66:279–290

    Article  PubMed  CAS  Google Scholar 

  • Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573

    CAS  PubMed  Google Scholar 

  • Leubner-Metzger G, Meins FJ (1999) Functions and regulation of plant β-1,3-glucanases (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-Related Proteins in Plants. CRC Press, Boca Raton, Florida, pp. 77–105

    Google Scholar 

  • Leubner-Metzger G, Meins F. Jr (2000) Sense transformation reveals a novel role for class I β-1,3-glucanase in tobacco seed germination. Plant J 23:215–221

    Article  CAS  PubMed  Google Scholar 

  • Levorson JP, Chlan CA (1996) Isolation of a genomic DNA clone from Gossypium hirsutum with high similarity to Class I endochitinase plant sequences (Accession No. U60197). Plant Physiol 111:1354

    Google Scholar 

  • Li WL, Faris JD, Muthukrishnan S, Liu DJ, Chen PD, Gill BS (2001) Isolation and characterization of novel cDNA clones of acidic chitinases and β-1,3-glucanases from wheat spikes infected by Fusarium graminearum. Theor Appl Genet 102:353–362

    Article  CAS  Google Scholar 

  • Li HY, Zhu YM, Chen Q, Conner RL, Ding XD, Zhang BB (2004) Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biologia Plant 48:367–374

    Article  CAS  Google Scholar 

  • Liao YC, Kreuzaler F, Fischer R, Reisener HJ, Tiburzy R (1994) Characterization of a wheat class Ib chitinase gene differentially induced in isogenic lines by infection with Puccinia graminis. Plant Sci 103:177–187

    Article  CAS  Google Scholar 

  • Lieckfeldt E, Cavignac Y, Fekete C, Borner T (2000) Endochitinase gene-based phylogenetic analysis of Trichoderma. Microbiol Res 155:7–15

    Article  CAS  PubMed  Google Scholar 

  • Lifang WU, Hong LI, Huiyun F, Lijun WU, Zengliang YU (2001) Introduction of rice chitinase gene into wheat via low energy Ar+ beam implantation. Chinese Sci Bulletin 46

    Google Scholar 

  • Limón MC, Chacón MR, Mejías R, Delgado-Jarana J, Rincón AM, Codón AC, Benítez T (2004) Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding-domain. Appl Microbiol Biotechnol 64:675–685

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Nat Biotechnol 13:686–691

    Article  CAS  Google Scholar 

  • Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150

    Article  CAS  Google Scholar 

  • Linthorst HJ, Melchers LS, Mayer A, Van Roekel JS, Cornelissen BJ, Bol JF (1990) Analysis of gene families encoding acidic and basic beta-1,3-glucanases of tobacco. Proc Natl Acad Sci USA 87:8756–8760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Woo SL, Di Piettro A (1993) Chitinolytic enzymes produced by Trichoderma harzanium. II. Antifungal activity of purified endochitinasc and chitobiosidase. Phytopathology 83:302–307

    Article  CAS  Google Scholar 

  • Lorito M, Woo LS, Garcia Fernandez I, Colucci G, Harman Gary E, Pintor-Toros JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozovaya VV, Waranyuwat A, Widholm JM (1998) β-1,3-glucanase and resistance to Aspergillus flavus infection in maize. Crop Sci 38:1255–1260

    Article  CAS  Google Scholar 

  • M’hamdi M, Chikh-Rouhou H, Boughalleb N, Ruiz de Galarreta JI (2012) Enhanced resistance to Rhizoctonia solani by combined expression of chitinase and Ribosome Inactivating Protein in transgenic potatoes (Solanum tuberosum L.). Span J Agric Res 10:778–785

    Article  Google Scholar 

  • Mackintosh CA, Garvin DF, Radmer LE, Heinen SJ, Muehlbauer GJ (2006) A model wheat cultivar for transformation to improve resistance to fusarium head blight. Plant Cell Rep 25:313–319

    Article  CAS  PubMed  Google Scholar 

  • Malatheshaiah NT, Pu K, Kempagangaiah K, Swamidatta SH, Narasimhamurthy YK, Shrishailappa KM (2011) Cloning, expression and development of transgenic tobacco using ChiA gene from native isolate of Serratia marcescens 141. Transgenic Plant J 5:72–77

    Google Scholar 

  • Manczinger L, Antal Z, Kredics L (2002) Ecophysiology and breeding of mycoparasitic Trichoderma strains (a review). Acta Microbiol Immunol Hung 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Maneewan K, Bunnag S, Theerakulpisut P, Kosittrakun M, Suwanagu A (2005) Transformation of rice (Oryza sativa L.) cv. Chainat 1 using chitinase gene. Songklanakarin J Sci Technol 27:1151–1162

    Google Scholar 

  • Manya H, Aoki J, Watanabe M, Adachi T, Asou H, Inoue Y, Arai H, Inoue K (1998) Switching of platelet-activating factor acetylhydrolase catalytic subunits in developing rat brain. J Biol Chem 273:18567–18572

    Article  CAS  PubMed  Google Scholar 

  • Mauch F, Staehelin LA (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1:447–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1988a) Antifungal hydrolases in pea tissue I. Purification and characterization of two chitinases and two beta-1,3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol 87:325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988b) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1998) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and /β -1,3-glucanase. Plant Physiol 88: 936–942

    Google Scholar 

  • Mayer K (1999) Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402:769–777

    Article  CAS  PubMed  Google Scholar 

  • Maziah M, Sareeramanan P, Sariah M (2007) Production of transgenic banana cultivar, Rastali (AAB) via Agrobacterium mediated transformation with rice chitinase gene. J Plant Sci 5:504–517

    Google Scholar 

  • McCreath KJ, Specht CA, Liu Y, Robbins PW (1996) Molecular cloning of a third chitinase gene (CHT1) from Candida albicans. Yeast 12:501–504

    Article  CAS  PubMed  Google Scholar 

  • McIntyre M, Nielsen J, Arnau J (2004) Proceedings of the 7th European conference on fungal genetics, Copenhagen, Denmark

    Google Scholar 

  • Mei L, Zong-xiu S, Jei Z, Tong X, Gary EH, Matteo L (2004) Enhancing rice resistance to fungal pathogens by transformation with cell degrading enzyme genes from Trichoderma atroviride. J Zhejiang Uni Sci 5:133–136

    Article  Google Scholar 

  • Melander M, Kamnert I, Happstadius I, Liljeroth E, Bryngelsson T (2006) Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and β-1,3-glucanase genes in a double-gene construct. Plant Cell Rep 25:942–952

    Article  CAS  PubMed  Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease resistance breeding. Curr Opin Plant Biol 3:147–152

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Kobayashi S, Nishizawa Y, Kuniga T, Matsumoto R (2006) Transformation of trifoliate orange with rice chitinase gene and the use of the transformed plant as a rootstock. Sci Hortic 108:439–441

    Article  CAS  Google Scholar 

  • Mitsutomi M, Ueda M, Arai M, Ando A, Watanabe T (1996) Action patterns of microbial chitinases and chitosanases on partially N-acetylated chitosan. Chitin Enzymol. 2:273–284

    Google Scholar 

  • Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252

    Article  CAS  PubMed  Google Scholar 

  • Montero M, Sanz L, Rey M, Llobell A, Monte E (2007) Cloning and characterization of bgn16.3, coding for a β-1,6-glucanase expressed during Trichoderma harzianum mycoparasitism. J Appl Microbiol 103:1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Mora AA, Earle ED (2001) Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Mol Breed 8:1–9

    Article  CAS  Google Scholar 

  • Moravčíková J, Matusikova I, Libantova J, Bauer M, Mlynarova L (2004) Expression of cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tiss Organ Cult 79:161–168

    Article  Google Scholar 

  • Moravčíková J, Libantova J, Heldak J, JM S, Matusikova I, Galova Z, Mlynarov L (2007) Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia β-1,3- glucanase genes in transgenic potato plants. Acta Physiol Plant 29:133–141

    Article  CAS  Google Scholar 

  • Munch-Garthoff S, Neuhaus JM, Boller T, Kemmerling B, Kogel KH (1997) Expression of β-1,3-glucanase and chitinase in healthy, stem-rust-affected and licitortreated near-isogenic wheat lines showing Sr5- or Sr24-specified race-specific rust resistance. Plant 201:235–244

    Article  CAS  Google Scholar 

  • Muraki M, Morii H, Harata K (2000) Chemically prepared hevein domains: effect of C-terminal truncation and the mutagenesis of aromatic residues on the affinity for chitin. Protein Eng 13:385–389

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Mori H, Sakai F, Hayashi T (1995) Cloning and sequencing of a cDNA for poplar endo-1,4-beta-glucanase. Plant Cell Physiol 36:1229–1235

    CAS  PubMed  Google Scholar 

  • Nakamura T, Ishikawa M, Nakatani H, Oda A (2008) Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. Plant Physiol 147:391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus JM, Fritig B, Linthorst HJM, Meins F, Meins F Jr, Mikkelsen JD, Ryals J (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Rep 14:102–104

    Article  CAS  Google Scholar 

  • Nirala NK, Das DK, Srivastava PS, Sopory SK, KC U (2010) Expression of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis vinifera L.). Vitis 49:181–187

    CAS  Google Scholar 

  • Nishizawa Y, Kishimoto N, Saito A, Hibi T (1993) Sequence variation, differential expression and chromosomal location of rice chitinase genes. Mol Gen Genet 241:1–10

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1. Plant Mol Biol 51:143–152

    Article  CAS  PubMed  Google Scholar 

  • Nobe R, Sakakibara Y, Ogawa K, Suiko M (2004) Cloning and expression of a novel Trichoderma viride laminarinase AI gene (lamAI). Biosci Biotechnol Biochem 68:2111–2119

    Article  CAS  PubMed  Google Scholar 

  • Ntui VO, Azadi P, Thirukkumaran G, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes. Plant Pathol 60:221–231

    Article  CAS  Google Scholar 

  • Oh HY, Yang MS (1995) Nucleotide sequence of genomic DNA encoding the potato β-1,3-glucanase. Plant Physiol 107:1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1990) Structure and expression of a tobacco beta-1,3-glucanase gene. Plant Mol Biol 15:941–946

    Article  CAS  PubMed  Google Scholar 

  • Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6J. Bacteriology 178:5065–5070

    Article  CAS  Google Scholar 

  • Ohnuma T, Yagi M, Yamagami T, Taira T, Aso Y, Ishiguro M (2002) Molecular cloning, functional expression, and mutagenesis of cDNA encoding rye (Secale cereale) seed chitinase-c. Biosci Biotechnol Biochem 66:277–284

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma T, Taira T, Yamagami T, Aso Y, Ishiguro M (2004) Molecular cloning, functional expression, and mutagenesis of cDNA encoding class I chitinase from rye (Secale cereale) seeds. Biosci Biotechnol Biochem 68:324–332

    Article  CAS  PubMed  Google Scholar 

  • Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R (1990) A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9:3429–3436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osswald WF, Shapiro JP, Doostdar H, McDonald RE, Niedz RP, Nairn CJ, Hearn CJ, Mayer RT (1994) Identification and characterization of acidic hydrolases with chitinase and chitosanase activities from sweet orange callus tissue. Plant Cell Physiol 35:811–820

    CAS  PubMed  Google Scholar 

  • Pan SQ, Ye XS, Kuc J (1989) Direct detection of β-1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Anal Biochem 182:136–140

    Article  CAS  PubMed  Google Scholar 

  • Park CM, Berry JO, Bruenn JA (1996) High-level secretion of a virally encoded anti-fungal toxin in transgenic tobacco plants. Plant Mol Biol 30:359–366

    Article  CAS  PubMed  Google Scholar 

  • Payne G, Ward E, Gaffney T, Goy PA, Moyer M, Harper A, Meins F Jr, Ryals J (1990) Evidence for a third structural class of beta-1,3-glucanase in tobacco. Plant Mol Biol 15:797–808

    Article  CAS  PubMed  Google Scholar 

  • Peberdy JF (1990) Fungal cell walls – a review. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey W, Copping LG (eds) Biochemistry of cell walls and membranes in fungi. Springer, Berlin, pp. 5–30

    Chapter  Google Scholar 

  • Perez P, Ribas JC (2004) Cell wall analysis. Methods 33:245–251

    Article  CAS  PubMed  Google Scholar 

  • Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure 2:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Peumans WJ, Barre A, Derycke V, Zhang W, May GD, Delcour JA (2000) Purification, characterization and structural analysis of an abundant β-1,3-glucanase from banana fruit. Eu J Biochem 267:1188–1195

    Article  CAS  Google Scholar 

  • Pitson SM, Seviour RJ, McDougall BM (1993) Noncelluloytic fungal β-glucanases: their physiology and regulation. Enzyme Microb Technol 15:178–192

    Article  CAS  PubMed  Google Scholar 

  • Pourhosseini L, Habashi AA, Kermani MJ, Khalighi A, Tahmasbi Z (2012) Agrobacterium-mediated transformation of chitinase gene in Rosa damascene cv. Ghamsar. Ann Biol Res 3:2843–2850

    CAS  Google Scholar 

  • Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK (2012) Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J Plant Biochem Biotechnol 22:222–233

    Article  CAS  Google Scholar 

  • Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens – a review of progress and future prospects. Can J Plant Pathol 23:216–235

    Article  CAS  Google Scholar 

  • Punja ZK (2006) Recent developments towards achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28:298–308

    Article  Google Scholar 

  • Qiao LX, Ding X, Wang HC, Sui JM, Wang JS (2014) Characterization of the beta-1,3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation. Genet Mol Res 13:1893–1904

    Article  CAS  PubMed  Google Scholar 

  • Radonic LM, Zimmermann JM, Zavallo D, López N, Bilbao ML (2008) Introduction of antifungal genes in sunflower via Agrobacterium. Electron J Biotechn. doi:10.2225/vol11-issue5-fulltext-2

    Google Scholar 

  • Raham SK, Rinaldi S, Ikuo N, Masahiro M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20

    Article  Google Scholar 

  • Rana IA, Loerz H, Schaeffer W, Becker D (2012) Over Expression of Chitinase and Chitosanase Genes from Trichoderma harzianum under Constitutive and Inducible Promoters in order to Increase Disease Resistance in Wheat (Triticum aestivum L). Mol Plant Breed 3:37–49

    Google Scholar 

  • Rezzonico E, Flury N, Meins F, Beffa R (1998) Transcriptional down-regulation by abscisic acid of pathogenesis-related β-1,3-glucanase genes in tobacco cell cultures. Plant Physiol 117:585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of Dormant Buds Hyperinduces FLOWERING LOCUS T and Recruits GA-Inducible 1,3-β-glucanases to Reopen Signal Conduits and Release Dormancy in Populus. Plant Cell 23:130–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  CAS  PubMed  Google Scholar 

  • Romero GO, Simmons C, Yaneshita M, Doan M, Thomas BR, Rodriguez RL (1998) Characterization of rice endo-beta-glucanase genes (Gns2-Gns14) defines a new subgroup within the gene family. Gene 223:311–320

    Article  CAS  PubMed  Google Scholar 

  • Rommens CM, Kishore GM (2000) Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J (1992) Fungal cell wall: structure, synthesis and assembly. CRC Press, Boca Raton

    Google Scholar 

  • Ryan CA, Farmer EE (1991) Oligosaccharide signals in plants: a current assessment. Annu. Rev. Plant Physiol Mol Biol 42:651–674

    Article  CAS  Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev 11:317–338

    Article  CAS  Google Scholar 

  • Saiprasad GVS, Anand L, Suneetha C, Naveena C, Ganeshan G (2008) Development of Trichoderma harzianum endochitinase gene construct conferring antifungal activity in transgenic tobacco. Indian J Biotechnol 8:199–206

    Google Scholar 

  • Salanoubat M (2000) Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408:820–822

    Article  CAS  PubMed  Google Scholar 

  • Samac DA, Hironaka CM, Yallaly PE, Shah DM (1990) Isolation and Characterization of the Genes Encoding Basic and Acidic Chitinase in Arabidopsis thaliana. Plant Physiol 93:907–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Ballesta MT, Gosalbes MJ, Rodrigo MJ, Granell A, Zacarias L, Lafuente MT (2006) Characterization of a β-1,3-glucanase from citrus fruit as related to chilling-induced injury and ethylene production. Postharvest Biol Technol 40:133–140

    Article  CAS  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defense reactions. Trends Plant Sci 3:47–50

    Article  Google Scholar 

  • Sanz L, Montero M, Redondo J, Llobell A, Monte E (2005) Expression of an alpha-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J 272:493–499

    Article  CAS  PubMed  Google Scholar 

  • Sasaki C, Yokoyama A, Ithoh Y, Hashimoto M, Watanabe T, Fukamizo T (2002) Comparative study of the reaction mechanism of family 18 chitinases from plants and microbes. J Biochem 131:557–564

    Article  CAS  PubMed  Google Scholar 

  • Schäfer T, Flachowsky H, König S, Hempe S, Wubet T, Pei A, Kaldorf M, Hanke MV, Buscot F (2011) Mycorrhization of transgenic apple trees with increased resistance against fungal pathogens. BMC Proceedings 5(Suppl 7):O55

    Article  PubMed Central  Google Scholar 

  • Schlumbaum A, Mauch F, Vogeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Vloemans SA, Melchers LS, Van den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotinia tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen S, Kumar S, Ghani M (2011) Agrobacterium-mediated genetic transformation of rice chitinase (chiii) for fungus resistance in Chrysanthemum cv. ‘Snow Ball’. Floriculture and Ornamental Biotech 5:40–44

    Google Scholar 

  • Shah DM (1997) Genetic engineering for fungal and bacterial diseases. Curr Opin Biotechnol 8:208–214

    Article  CAS  PubMed  Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239–244

    Article  CAS  PubMed  Google Scholar 

  • Shah MR, Mukherjee PK, Eapen S (2010) Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens. Physiol Mol Biol Plants 16:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapira R, Ordentlich A, Chet I, Oppenheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherihia coli. Phytopathology 79:1246–1249

    Article  CAS  Google Scholar 

  • Sharma KK, Waliyar F, Lava Kumar P, Reddy VS, Reddy KR (2006) Development and evaluation of transgenic groundnut expressing the rice chitinase gene for resistance to Aspergillus flavus, In International conference on groundnut Aflatoxin management & Genomics, (Guangdong, China) held on 5–9 November

    Google Scholar 

  • Sharma R, Modgil M, Sharma P, Saini U (2012) Agrobacterium-mediated transfer of chitinase gene in apple (Malus x domestica Borkh.) rootstock MM106. Indian J of Horticult 69:1–6

    Google Scholar 

  • Sheidai M, Heydari N, Ghareyazi B (2009) Chitinase Polymorphism in Some Iranian Rice (Oriza Saiva L.) Cultivars using RFLP-PBR. Environmental Sci 6:105–112

    Google Scholar 

  • Shin S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Dill-Macky R, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59:2371–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons CR (1994) The physiology and molecular biology of plant 1,3-β-D-glucanases and 1,3;1,4-β-D-glucanases. Crit Rev Plant Sci 13:325–387

    CAS  Google Scholar 

  • Sinnott M (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90:1171–1202

    Article  CAS  Google Scholar 

  • Snyder-Leiby TE, Furtek DB (1995) A genomic clone (Accession No. U30324) from Theobroma cacao L. with high similarity to plant class I endochitinase sequences (PGR95-056). Plant Physiol 109:338

    Google Scholar 

  • Sowka S, Hsieh LS, Krebitz M, Akasawa A, Martin BM, StarrettD PCK, Scheiner O, Breiteneder H (1998) Identification and cloning of prs a 1, a 32-kDa endochitinase and major allergen of avocado, and its expression in the yeast Pichia pastoris. J Biol Chem 273:28091–28097

    Article  CAS  PubMed  Google Scholar 

  • Sperisen C, Ryals J, Meins F (1991) Comparison of cloned genes provides evidence for intergenomic exchange of DNA in the evolution of a tobacco glucan endo-1,3-beta-glucosidase gene family. Proc Natl Acad Sci USA 88:1820–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spolaore S, Trainotti L, Pavanello A, Casadoro G (2003) Isolation and promoter analysis of two genes encoding different endo-beta-1,4-glucanases in the non-climacteric strawberry. J Exp Bot 54:271–277

    Article  CAS  PubMed  Google Scholar 

  • Sreeramanan S, Maziah M, Xavier R (2009) A protocol for Agrobacterium-mediated transformation of banana with a rice chitinase gene. Emir J Food Agric 21:18–33

    Article  Google Scholar 

  • Sridevi G, Sabapathi N, Meena P, Nandakumar R, Samiyappan R (2003) Transgenic indica rice variety Pusa Basmati 1 constitutively expressing a rice chitinase gene exhibits enhanced resistance to Rhizoctonia solani. J Plant Biochem Biotechn 12:93–101

    Article  CAS  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290

    Article  CAS  Google Scholar 

  • Stanford A, Bevan M, Northcote ND (1989) Differential expression within a family of novel wound-induced genes in potato. Mol Gen Genet 215:200–208

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedeman-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75:687–706

    Article  CAS  PubMed  Google Scholar 

  • Su YC, Xu LP, Xue BT, Wu QB, Guo JL, Wu LG, Que YX (2013) Molecular cloning and characterization of two pathogenesis-related beta-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep 32:1503–1519

    Article  CAS  PubMed  Google Scholar 

  • Sundaresha S, Manoj Kumar A, Rohini S, Math S, Keshamma E, Chandrashekar S, Udayakumar M (2010) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β-1,3-glucanase. Eur J Plant Pathol 126:497–508

    Article  CAS  Google Scholar 

  • Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T (1999) The third chitinase gene (chic) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swords KMM, Liang J, Shah DM (1997) Novel approaches to engineering disease resistance in crops. In: Setlow JK (ed) Genetic engineering, vol 19. Plenum Press, New York, pp. 1–13

    Chapter  Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K (1998) Transgenic cucumber plants harbouring a rice chitinase gene exhibit enhanced resistance to grey mold (Botrytis cinerea). Plant Cell Rep 17:159–164

    Article  CAS  Google Scholar 

  • Tabei Y, Koga-Ban Y, Nishizawa Y, Kayano T, Tanaka H (1999) Transgenic cucumber plants harboring a rice chitinase gene and its environmental risk assessment, plant & animal genome VII conference (San Diego),CA, P530

    Google Scholar 

  • Taira T, Yamagami T, Aso Y, Ishigura M, Ishihara M (2001) Localization, accumulation and antifungal activity of chitinases in Rye (Secale cereale) seed. Biosci Biotechnol Biochem 65:2710–2718

    Article  CAS  PubMed  Google Scholar 

  • Takakura Y, Ito T, Saito H, Inoue T, Komari T, Kuwata S (2000) Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Mol Biol 42:883–897

    Article  CAS  PubMed  Google Scholar 

  • Takatsu Y, Nishizawa Hibi YT, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum Ramat. Kitamura) expressing a rice chitinase gene shows enhanced resistance to grey mold (Botrytis cinerea). Sci Hort 82:113–123

    Article  CAS  Google Scholar 

  • Takeuchi Y, Yoshikawa M, Takeba G, Tanaka K, Shibata D, Horino O (1990) Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitorreleasing factor, β-1,3-endoglucanase, in soybean. Plant Physiol 93:673–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takken FLW, Joosten MHAJ (2000) Plant resistance genes: their structure, function and evolution. Eur J Plant Pathol 106:699–713

    Article  CAS  Google Scholar 

  • Talarczyk A, Hennig J (1998) Characterization of a cDNA encoding a glucan endo-1,3-beta-glucosidase from potato (Solanum tuberosum L.). Plant Physiol 118:712–712

    Google Scholar 

  • Tanaka T et al. (2008) The Rice Annotation Project Database (RAP-DB) Nucleic Acids Res 36n (DATABASE ISSUE)

    Google Scholar 

  • Terakawa T, Takaya N, Horiuchi H, Koike M, Takagi M (1997) A fungal chitinase gene from Rhizopus oligosporus confers antifungal activity to transgenic tobacco. Plant Cell Rep 16:439–443

    CAS  Google Scholar 

  • Tesfaye M, Denton MD, Samac DA, Vance CP (2005) Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant and Soil 269:233–243

    Article  CAS  Google Scholar 

  • Tettelin H, Agostoni Carbone ML, Albermann K, Albers M, Arroyo J, Backes U, Barreiros T, Bertani I, Bjourson AJ, Bruckner M, Bruschi CV, Carignani G, Castagnoli L, Cerdan E, Clemente M.L, Coblenz A, Coglievina M, Coissac E, Defoor E, Del Bino S, Delius H, Delneri D, de Wergifosse P, Dujon B, Kleine K. et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Nature 387:81-84

    Google Scholar 

  • Thalmair M, Bauw G, Thiel S, Dohring T, Langebartels C, Sandermann H (1996) Ozone and ultraviolet B effects on the defenserelated proteins β-1,3-glucanase and chitinase in tobacco. J Plant Physiol 148:222–228

    Article  CAS  Google Scholar 

  • Thanseem I, Thulaseedharan A (2006) Optimization of RQRT-pCR protocols to measure beta-1,3-glucanase mRNA levels in infected tissues of rubber tree (Hevea brasiliensis). Indian J Exp Biol 44:492–498

    CAS  PubMed  Google Scholar 

  • Thimmapuram J, Ko TS, Korban SS (2001) Characterization and expression of beta-1,3-glucanase genes in peach. Mol Genet Genomics 265:469–479

    Article  CAS  PubMed  Google Scholar 

  • Tobias DJ, Manoharan M, Pritsch C, Dahleen LS (2007) Co bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv.Conlon). Plant Cell Rep 26:631–639

    Article  CAS  PubMed  Google Scholar 

  • Tohidfar MM, Mohammadi T, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tiss Organ Cult 83:83–96

    Article  CAS  Google Scholar 

  • Tohidfar M, Rassouli H, Haghnazari A, Ghareyazie B, Najafi J (2009) Evaluation of stability of chitinase gene in transgenic offspring of cotton (Gossypium hirsutum). Iranian J of Biotech 7:45–50

    CAS  Google Scholar 

  • Tohidfar M, Hossaini R, Bashir NS, Meisam T (2012) Enhanced resistance to Verticillium dahlia in transgenic cotton expressing an endochitinase gene from Phaseolus vulgaris. Czech J Genet Plant Breed 48:33–41

    Google Scholar 

  • Trainotti L, Spolaore S, Pavanello A, Baldan B, Casadoro G (1999) A novel E-type endo-beta-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol Biol 40:323–332

    Article  CAS  PubMed  Google Scholar 

  • Trainotti L, Pavanello A, Zanin D (2006) PpEG4 is a peach endo-beta-1,4-glucanase gene whose expression in climacteric peaches does not follow a climacteric pattern. J Exp Bot 57:589–598

    Article  CAS  PubMed  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vad K, de Neergaard E, Madriz-Ordenana K, Mikkelsen JD, Collinge DB (1993) Accumulation of defence-related transcripts and cloning of a chitinase mRNA from pea leaves (Pisum sativum L.) innoculated with Ascochyta pisi Lib. Plant Sci 92:69–79

    Article  CAS  Google Scholar 

  • Van Aalten DMF, Komander D, Synstad B, Gaseidnes S, Peter MG, Eijsink VGH (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA 98:8979–8984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Kan JAL, Joosten MHAJ, Wagemakers CAM (1992) Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol Biol 20:513–527

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40:199–211

    Article  CAS  Google Scholar 

  • Van Loon LC, Van Strrien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55:85–97

    Article  CAS  Google Scholar 

  • Van Parijs J, Broeckaert WF, Goldstein IJ, Peumans WJ (1991) Hevein: an antifungal protein from rubber-tree latex. Planta 183:258–264

    Article  CAS  PubMed  Google Scholar 

  • Velazhahan R, Samiyappan R, Vidhyasekaran P (2000) Purification of an elicitor-inducible antifungal chitinase from suspensioncultured rice cells. Phytoparasitica 28:131–139

    Article  CAS  Google Scholar 

  • Vellicce GR, Ricci JCD, Hernandez L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57–68

    Article  CAS  PubMed  Google Scholar 

  • Vögeli-Lange R, Frundt C, Hart CM, Beffa R, Nagy F, Meins F Jr (1994) Evidence for a role of β-1,3-glucanase in dicot seed germination. Plant J 5:273–278

    Article  Google Scholar 

  • Voorhorst WG, Eggen RI, EJ d L, WM V (1995) Characterization of the celB gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli. J Bacteriol 177:7105–7111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wally O, Jayaraj J, Punja Z (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342

    Article  CAS  Google Scholar 

  • Wang Y, Kausch AP, Chandlee JM, Luo H, Ruemmele BA, Browning M, Jackson N, Goldsmith MR (2003) Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Sci 106:497–506

    Article  CAS  Google Scholar 

  • Wang J, Tian N, Huang X, Chen LY, Schlappi M, Xu ZQ (2009) The tall fescue turf grass class i chitinase gene Fachit1 is activated by fungal elicitors, dehydration, ethylene, and mechanical wounding. Plant Mol Biol Rep 27:305–314

    Article  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Kimura K, Sumiya T, Nikaidou N, Suzuki K, Suzuki M, Taiyoji M, Ferrer S, Regue M (1997) Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol 179:7111–7117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessels JGH, Sietsma JH (1981) Fungal cell wall: a survey. In: Tanner W, Loewus FA (eds), Encyclopedia of plant physiology, New series, plant carbohydrates II, vol. 13B, Springer, New York pp 352-394

    Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright HT, Sandrasegaram G, Wright CS (1991) Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. J Mol Evol 33:283–294

    Article  CAS  PubMed  Google Scholar 

  • Wrobel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmianski J, Kepczynska E, Szopa J (2004) Expression of α-1, 3-glucanase in flax causes increased resistance to fungi. Physiol Mol Plant Pathol 65:245–256

    Article  CAS  Google Scholar 

  • Wu S, Kriz AL, Widholm JM (1994) Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize. Plant Physiol 105:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Khan AA, Shih CT, Shih DS (2001) Cloning and sequence determination of a gene encoding an osmotin-like protein fromstrawberry (Fragaria ananassa Ducth.). DNA Seq 12:447–453

    Article  CAS  PubMed  Google Scholar 

  • Xiao YH, Li XB, Yang XY, Luo M, Hou L, Guo SH, Luo XY, Pei Y (2007) Cloning and characterization of a balsam pear class I chitinase gene (Mcchit1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci Biotechnol Biochem 71:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Wang J, Fincher GB (1992) Evolution and differential expression of the (1-3)-beta-glucan endohydrolase-encoding gene family in barley, Hordeum vulgare. Gene 120:157–165

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhu Q, Panbangred W, Shirasu K, Lamb C (1996) Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L.). Plant Mol Biol 30:387–401

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Quin G, Tian S (2008) Effect of microbrial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen. Int J Food Microbiol 126:153–158

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Nakayama K, Hayashi T, Tanaka Y, Koike S (2002) Molecular cloning and characterization of a novel β-1,3-glucanase gene from rice. Biosci Biotechnol Biochem 66:1403–1406

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto R, Nevins DJ (1983) Degradation of a glucan containing β-(l-3) and β-(1-6) linkages by exo-(1-3)-β-D-glucanase. Carbohydr Res 122:217–226

    Article  CAS  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Yeh S, Moffatt B, Griffith M, Xiong F, Yang DSC, Wiseman SB, Sarhan F, Danyluk J, Xue YQ, Hew CL, Doherty-Kirby A, Lajoie G (2000) Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 124:1251–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun DD, Urzo MP, Abad L, Takeda S, Salzman R, Chen Z, Lee H, Hasegawa PM, Bressan RA (1996) Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Plant Physiol 111:1219–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun DJ, Bressan RA, Hasegawa PM (1997) Plant antifungal proteins. Plant Breeding Reviews 14:39–88

    CAS  Google Scholar 

  • Zanor MI, Valle EM, Vallejos RH (2000) Isolation and expression of a barley beta-1,3-glucanase isoenzyme II gene. DNA Seq 10:395–398

    Article  CAS  PubMed  Google Scholar 

  • Zemanek AB, Ko TS, Thimmapuram J, Hammerschlag FA, Korban SS (2002) Changes in β-1,3-glucanase mRNA levels in peach in response to treatment with pathogen culture filtrates, wounding, and other elicitors. J Plant Physiol 159:877–889

    Article  CAS  Google Scholar 

  • Zeng Y, Lan LQ, Luo H, Bai J, Yang MY, Miao C, Cai YF, Qiang XL, Chen F (2002) RAPD markers in diversity detection and variety identification of Tibetan hulless barley. Plant Mol Biol Rep 20:369–377

    Article  CAS  Google Scholar 

  • Zhang D, Hrmova M, Wan CH, Wu C, Balzen J, Cai W, Wang J, Densmore LD, Fincher GB, Zhang H, Haigler CH (2004) Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol Biol 54:353–372

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Lamb CJ (1991) Isolation and characterization of a rice gene encoding a basic chitinase. Mol Gen Genet 226:289–296

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Xu X, Xiao G, Yuan L, Li B (2007) Enhancing disease resistances of super hybrid rice with four antifungal genes. Sci China C Life Sci 50:31–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from the Department of Biotechnology, Ministry of Science and Technology, Government of India vide grant no BT/PR 785/AGR/2/376/2006 to Jagdeep S Sandhu is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep S. Sandhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sandhu, J.S., Sidhu, M.K., Yadav, I.S. (2017). Control of Fungal Diseases in Agricultural Crops by Chitinase and Glucanase Transgenes. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-48006-0_6

Download citation

Publish with us

Policies and ethics