Skip to main content
Log in

Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Simultaneous expression of a tobacco class I chitinase and a class I β-1,3-glucanase gene in tomato resulted in increased fungal resistance, whereas transgenic tomato plants expressing either one of these genes were not protected against fungal infection. After infection with Fusarium oxysporum f.sp. lycopersici, a 36% to 58% reduction in disease severity was observed in resistant tomato lines. Two transgenic lines largely recovered from the initial infection by the time wild-type tomato plants had died.

The overall results are consistent with the observation that class I chitinases and class I β-1,3-glucanases synergistically inhibit the growth of fungi in vitro and provide the first experimental support to the hypothesis that such synergy can contribute to enhanced fungal resistance in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander D., R.M. Goodman, M. Gut-Rella, C. Glascock, K. Weymann, L. Friedrich, D. Maddox, P. Ahl-Goy, T. Luntz, E. Ward & J.A. Ryals, 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1 a. Proc. Natl. Acad. Sci. USA 90: 7327–7331.

    Article  PubMed  CAS  Google Scholar 

  • Broglie K., I. Chet, M. Holliday, R. Cressman, P. Biddle, S Knowlton, C.J. Mauvais & R. Broglie, 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.

    Article  PubMed  CAS  Google Scholar 

  • Collinge D.B., K.M. Kragh, J.D. Mikkelsen, K.K. Nielsen, U. Rasmussen & K. Ved, 1993. Plant chitinases. The Plant Journal 3: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen B.J.C. & L.S. Melchers, 1993. Strategies for control of fungal diseases in plants. Plant Physiol. 101: 709–712.

    PubMed  CAS  Google Scholar 

  • Hain R., H.J. Reif, E. Krause, R. Langebartels, H. Kindl, B. Vornam, W. Wiese, E. Schmeltzer, P.H. Schreier, R.H. Stöcker & K. Stenzel, 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Hood E.E., S.B. Gelvin, L.S. Melchers & A. Hoekema, 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research 2: 208–218.

    Article  CAS  Google Scholar 

  • Joosten M.H.A.J. & P.J.G.M.de Wit, 1989. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucanases and chitinases. Plant Physiology 89: 945–951.

    Article  PubMed  CAS  Google Scholar 

  • Kalloo G. & B.O. Bergh, 1993. Genetic Improvement of Vegetable Crops. Pergamon Press Ltd., Oxford.

    Google Scholar 

  • Koorneef M., J.A.M.van Diepen, C.J. Hanhart, A.C. Kieboomde Waard, L. Martinelli, H.C.H. Schoenmakers & J. Wijbrandi, 1989. Chromosomal instability in cell and tissue cultures of tomato haploids and diploids. Euphytica 43: 179–186.

    Article  Google Scholar 

  • Lamb C.J., J.A. Ryals, E.R. Ward & R.A. Dixon, 1992. Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/Technology 10: 1436–1445.

    Article  PubMed  CAS  Google Scholar 

  • Leah R., H. Tommerup, I. Svendsen & J. Mundy, 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266: 1464–1573.

    Google Scholar 

  • Logemann J., G. Jach, H. Tommerup, J. Mundy & J. Schell, 1992. Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio/Technology 10: 305–308.

    Article  CAS  Google Scholar 

  • Logemann J., G. Jach, S. Logemann, R. Leah, G. Wolf, J. Mundy, A. Oppenheim, I. Chet & J. Schell, 1993. Expression of a ribosome inhibiting protein (RIP) or a bacterial chitinase leads to fungal resistance in transgenic plants. In: B. Fritig & M. Legrands (Eds) Mechanisms of plant defense responses. pp. 446–448. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Mauch F., B. Mauch-Mani & T. Boller, 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol. 88: 936–942.

    Article  PubMed  CAS  Google Scholar 

  • Melchers L.S., M.B. Sela-Buurlage, S.A. Vloemans, C.P. Woloshuk, J.S.C.van Roekel, J. Pen, P.J.M.van den Elzen & B.J.C. Comelissen, 1993. Extracellular targeting of vacuolar tobacco proteins AP24, chitinase and β-1,3-glucanase in transgenic plants. Plant Molec. Biol. 21: 583–593.

    Article  CAS  Google Scholar 

  • Melchers L.S., M. Aphotheker-de Groot, J.A.van der Knaap, A.s. Ponstein, M.B. Sela-Buurlage, J.F. Bol, B.J.C. Cornelissen, P.J.M.van der Elzen & H.J.M. Linthorst, 1994. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. The Plant Journal 5: 469–480.

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J.M., P. Ahl-Goy, U. Hinz, S. Flores & F. Meins, 1991. High level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Molec. Biol. 16: 141–151.

    Article  CAS  Google Scholar 

  • Poehlman J.M., 1987. Breeding Field Crops. Van Nostrand Reinhold Publishers, New York, third edition.

    Google Scholar 

  • Ponstein A.P., S.A. Bres-Vloemans, M.B. Sela-Buurlage, P.J.M.van den Elzen, L.S. Melchers & B.J.C. Comelissen, 1993. A novel pathogen and wound-inducible tobacco protein with antifungal activity. Plant Physiol. 104: 109–118.

    Article  Google Scholar 

  • Sela-Buurlage M.B., A.S. Ponstein, S.A. Bres-Vloemans, L.S. Melchers, P.J.M.van den Elzen & B.J.C. Cornelissen, 1993. Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol. 101: 857–863.

    PubMed  CAS  Google Scholar 

  • Sijmons P.C., B.M.M. Dekker, B. Schrammeijer, T.C. Verwoerd, P.J.M.van den Elzen & A. Hoekema, 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8: 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter G. & D. Wegener, 1993. Genetic engineering of disease and pest resistance in plants: present state of the art. Z. Naturforsch. 48c: 673–688.

    Google Scholar 

  • Tuzun S., M.N. Rao, U Vogeli, C.L. Schardl & J. Kuc, 1989. Induced systemic resistance to blue mold: early induction and accumulation of β-1,3-glucanases, chitinases and other pathogenesis-related proteins in immunized tobacco. Phytopathology 79: 979–983.

    Article  CAS  Google Scholar 

  • Van den Elzen P.J.M., E. Jongedijk, L.S. Melchers & B.J.C. Cornelissen, 1993. Virus and fungal resistance: from laboratory to field. Phil. Trans. R. Soc. Lond. B 342: 271–278.

    Article  Google Scholar 

  • Van Roekel J.S.C., B. Damm, L.S. Melchers & A. Hoekema, 1993. Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Reports 12: 644–647.

    Article  Google Scholar 

  • Vogelsang R. & W. Barz, 1993. Purification, characterization and differential hormonal regulation of a β-1,3-glucanase and two chitinases from chickpea (Cicer arientinum L.). Planta 189: 60–69.

    Article  PubMed  CAS  Google Scholar 

  • Ward E.R., G.B. Payne, M.B. Moyer, S.C. Williams, S.S. Dincher, K.C. Sharkey, J.H. Beck, H.T. Taylor, P. Ahl-Goy, F. Meins & J.A. Ryals, 1991. Differential regulation of β-1,3-glucanse messenger RNAs in response to pathogen infection. Plant Physiol. 96: 390–397.

    Article  PubMed  CAS  Google Scholar 

  • Weide R., M. Koorneef & P. Zabel, 1989. A simple nondestructive spraying assay for the detection of an active kanamycin resistance gene in transgenic tomato plants. Theor. Appl. Genet. 78: 169–172.

    Article  Google Scholar 

  • Wessels J.G.H. & J.H. Sietsma, 1981. Fungal cell walls: a survey. In: W. Tanner & F.A. Loewus (Eds) Encyclopedia of Plant Physiology, new series, vol. 13B: Plant carbohydrates, pp. 352–394. Springer Verlag, Berlin.

    Google Scholar 

  • Yenofsky R.L., M. Fine & J.W. Pellow, 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 87: 3435–3439.

    Article  PubMed  CAS  Google Scholar 

  • Zu Q., E.A. Maher, S. Masoud, R.A. Dixon & C. Lamb, 1994. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12: 807–812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jongedijk, E., Tigelaar, H., van Roekel, J.S.C. et al. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85, 173–180 (1995). https://doi.org/10.1007/BF00023946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023946

Key words

Navigation