Advertisement

Nanocellulose Composite Biomaterials in Industry and Medicine

Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 12)

Abstract

Cellulose, the most abundant polymer on earth, has merited a remarkable wave of attention, largely revolving around its nanocellulose derivative, a green, easily extractable, high-performance nanomaterial. Its widespread availability, high abundance, renewable nature, biocompatibility, low toxicity, unique structure, and easily tailorable mechanical and physical properties render it an attractive reagent in various sectors. While free of biological activity, nanocellulose presents a versatile platform for fabrication of composite, clinically relevant materials with healing and regeneration capacities. Similarly, its tunable characteristics enable design of smart drug delivery systems and biomimetics. It has also proven a transformative agent in the food packaging and 3D printing industries. The vast potential of nanocellulose continues to emerge and promises to bring to further exciting and novel applications. This chapter provides an overview of the various sources, production, and processing methods of nanocellulose, as well as the chemical modifications used to modify its properties and functions. In addition, its vast applications in the worlds of printing, wound healing, pharmaceutics, and tissue engineering are extensively reviewed.

References

  1. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88PubMedCrossRefGoogle Scholar
  2. Abitbol T, Kam D, Levi-Kalisman Y, Gray DG, Shoseyov O (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir.  https://doi.org/10.1021/acs.langmuir.7b04127PubMedCrossRefGoogle Scholar
  3. Abo-elseoud WS, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM (2018) Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol 111:604–613PubMedCrossRefGoogle Scholar
  4. Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016a) Highly modified cellulose nanocrystals and formation of Epoxy-Nanocrystalline Cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8:28086–28095PubMedCrossRefGoogle Scholar
  5. Abraham E, Nevo Y, Slattegard R, Attias N, Sharon S, Lapidot S, Shoseyov O (2016b) Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials. ACS Sustain Chem Eng 4:1338–1346CrossRefGoogle Scholar
  6. Abraham E, Weber DE, Sharon S, Lapidot S, Shoseyov O (2017) Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. ACS Appl Mater Interfaces 9:2010–2015PubMedCrossRefGoogle Scholar
  7. Åhlén M, Tummala GK, Mihranyan A (2018) Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications. Int J Pharm 536:73–81PubMedCrossRefGoogle Scholar
  8. Ahmad N, Mohd Amin MCI, Mahali SM, Ismail I, Giam Chuang VT (2014) Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery. Mol Pharm 11:4130–4142PubMedCrossRefGoogle Scholar
  9. Ahrem H, Pretzel D, Endres M, Conrad D, Courseau J, Müller H, Jaeger R, Kaps C, Klemm DO, Kinne RW (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10:1341–1353PubMedCrossRefGoogle Scholar
  10. Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156CrossRefGoogle Scholar
  11. Akaraonye E, Filip J, Safarikova M, Salih V, Keshavarz T, Knowles JC, Roy I (2016) Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3-hydroxybutyrate) and micro-fibrillated bacterial cellulose. Polym Int 65:780–791CrossRefGoogle Scholar
  12. Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20:1747–1764CrossRefGoogle Scholar
  13. Akhlaghi SP, Tiong D, Berry RM, Tam KC (2014) Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. Eur J Pharm Biopharm 88:207–215PubMedCrossRefGoogle Scholar
  14. Alizadeh N, Akbari V, Nurani M, Taheri A (2018) Preparation of an injectable doxorubicin surface modified cellulose nanofiber gel and evaluation of its anti-tumor and anti-metastasis activity in melanoma. Biotechnol Prog 34:537–545PubMedCrossRefGoogle Scholar
  15. Alkhatib Y, Dewaldt M, Moritz S, Nitzsche R, Kralisch D, Fischer D (2017) Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur J Pharm Biopharm 112:164–176PubMedCrossRefGoogle Scholar
  16. An SJ, Lee SH, Huh JB, Jeong SI, Park JS, Gwon HJ, Kang ES, Jeong CM, Lim YM (2017) Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int J Mol Sci 18:2236PubMedCentralCrossRefPubMedGoogle Scholar
  17. Andersson J, Stenhamre H, Bäckdahl H, Gatenholm P (2010) Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J Biomed Mater Res Part A 94A:1124–1132Google Scholar
  18. Andrade FK, Moreira SMG, Domingues L, Gama FMP (2009) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res Part A 92:9–17Google Scholar
  19. Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6:4034–4041PubMedCrossRefGoogle Scholar
  20. Andrade FK, Silva JP, Carvalho M, Castanheira EMS, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res Part A 98(A):554–566CrossRefGoogle Scholar
  21. Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–421PubMedCrossRefGoogle Scholar
  22. Anirudhan TS, Rejeena SR (2014) Poly(acrylic acid-co-acrylamide-co-2-acrylamido-2-methyl-1- propanesulfonic acid)-grafted nanocellulose/poly(vinyl alcohol) composite for the in vitro gastrointestinal release of amoxicillin. Appl Polym 131:40699Google Scholar
  23. Anirudhan TS, Nair SS, Chithra Sekhar V (2017) Deposition of gold-cellulose hybrid nanofiller on a polyelectrolyte membrane constructed using guar gum and poly(vinyl alcohol) for transdermal drug delivery. J Membr Sci 539:344–357CrossRefGoogle Scholar
  24. Ansell MP (2015) Wood composites. Elsevier Ltd, New York CityGoogle Scholar
  25. Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261CrossRefGoogle Scholar
  26. Araújo IMS, Silva RR, Pacheco G, Lustri WR, Tercjak A, Gutierrez J, Júnior JRS, Azevedo FHC, Figuêredo GS, Vega ML, Ribeiro SJL, Barud HS (2018) Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr Polym 179:341–349PubMedCrossRefGoogle Scholar
  27. Ataide JA, De Carvalho NM, Rebelo MDA, Chaud MV, Grotto D, Gerenutti M, Rai M, Mazzola PG, Jozala AF (2017) Bacterial nanocellulose loaded with bromelain: assessment of antimicrobial, antioxidant and physical-chemical properties. Sci Rep 7:18031PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149PubMedCrossRefGoogle Scholar
  29. Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330PubMedCrossRefGoogle Scholar
  30. Badshah M, Ullah H, Khan SA, Joong K, Park JK, Khan T (2017) Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose 24:5041–5052CrossRefGoogle Scholar
  31. Badshah M, Ullah H, Khan AR, Khan S, Park JK, Khan T (2018) Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 113:526–533PubMedCrossRefGoogle Scholar
  32. Bajpai SK, Ahuja S, Chand N, Bajpai M (2017) Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: an in vivo study on Albino Rats for wound dressing. Int J Biol Macromol 104:1012–1019PubMedCrossRefGoogle Scholar
  33. Barua S, Das G, Aidew L, Buragohain AK, Karak N (2013) Copper–copper oxide coated nanofibrillar cellulose: a promising biomaterial. RSC Adv 3:14997–15004CrossRefGoogle Scholar
  34. Barud HDS, de Araújo Júnior AM, Saska S, Mestieri LB, Campos JADB, de Freitas RM, Ferreira NU, Nascimento AP, Miguel FG, Vaz MMDOLL, Barizon EA, Marquele-Oliveira F, Gaspar AMM, Ribeiro SJL, Berretta AA (2013) Antimicrobial Brazilian propolis (EPP-AF) eontaining biocellulose membranes as promising biomaterial for skin wound healing. Evid Based Complement Alternat Med 2013:1–10CrossRefGoogle Scholar
  35. Basmaji P, De Olyveira GM, Marcio Luiz dos S, Guastaldi AC (2014) Novel antimicrobial peptides bacterial cellulose obtained by symbioses culture between polyhexanide biguanide (PHMB) and green tea. J Biomater Tissue Eng 4:59–64CrossRefGoogle Scholar
  36. Basnett P, Knowles JC, Pishbin F, Smith C, Keshavarz T, Boccaccini AR, Roy I (2012) Novel biodegradable and biocompatible poly(3-hydroxyoctanoate)/bacterial cellulose composites. Adv Eng Mater 14:330–343CrossRefGoogle Scholar
  37. Basu A, Lindh J, Ålander E, Strømme M, Ferraz N (2017) On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: physicochemical properties and application-oriented biocompatibility studies. Carbohydr Polym 174:299–308PubMedCrossRefGoogle Scholar
  38. Basu A, Heitz K, Strømme M, Welch K, Ferraz N (2018) Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: candidate materials for advanced wound care applications. Carbohydr Polym 181:345–350PubMedCrossRefGoogle Scholar
  39. Bayer J, Granda LA, Méndez JA, Pèlach MA, Vilaseca F, Mutjé P (2016) Cellulose polymer composites (WPC). In: Advanced high strength natural fibre composites in construction. Elsevier Science, Kent, pp 115–139Google Scholar
  40. Bhandari J, Mishra H, Mishra PK, Wimmer R, Ahmad FJ, Talegaonkar S (2017) Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int J Nanomedicine 12:2021–2031PubMedPubMedCentralCrossRefGoogle Scholar
  41. Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, Guguen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298PubMedCrossRefGoogle Scholar
  42. Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release 113:43–56PubMedCrossRefGoogle Scholar
  43. Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007a) Modification of nanocellulose with a xyloglucan – RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697–3704PubMedCrossRefGoogle Scholar
  44. Bodin A, Backdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007b) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434PubMedCrossRefGoogle Scholar
  45. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007c) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408PubMedCrossRefGoogle Scholar
  46. Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901PubMedCrossRefGoogle Scholar
  47. Booij JC, Baas DC, Beisekeeva J, Gorgels TGMF, Bergen AAB (2010) The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 29:1–18PubMedCrossRefGoogle Scholar
  48. Borges AC, Eyholzer C, Duc F, Bourban PE, Tingaut P, Zimmermann T, Pioletti DP, Månson JAE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421PubMedCrossRefGoogle Scholar
  49. Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199PubMedCrossRefGoogle Scholar
  50. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169PubMedCrossRefGoogle Scholar
  51. Brown EE, Laborie MPG, Zhang J (2012) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19:127–137CrossRefGoogle Scholar
  52. Brown EE, Hu D, Abu Lail N, Zhang X (2013) Potential of nanocrystalline cellulose-fibrin nanocomposites for artificial vascular graft applications. Biomacromolecules 14:1063–1071PubMedCrossRefGoogle Scholar
  53. Butcher M (2011) Catch or kill? How DACC technology redefines antimicrobial management. Br J Nurs/Br J Community Nurs 13:S15–S16Google Scholar
  54. Butchosa N, Brown C, Larsson PT, Berglund LA, Bulone V, Zhou Q (2013) Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem 15:3404–3413CrossRefGoogle Scholar
  55. Cacicedo ML, León IE, Gonzalez JS, Porto LM, Alvarez VA, Castro GR (2016) Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf B Biointerfaces 140:421–429CrossRefGoogle Scholar
  56. Cacicedo ML, Islan GA, Drachemberg MF, Alvarez VA, Bartel L, Bolzán AD, Castro GR (2018) Hybrid bacterial cellulose – pectin films for delivery of bioactive molecules. New J Chem 42:7457–7467CrossRefGoogle Scholar
  57. Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91CrossRefGoogle Scholar
  58. Cai H, Wu B, Liu Y, Li Y, Shi L, Gong L, Xia Y, Heng B, Wu H, Ouyang H, Zhu Z, Zou X (2018) Local delivery of stromal cell-derived factor-1α improves the pregnancy rate of injured uterus through the promotion of endometrial and vascular regeneration. In: bioRvix  https://doi.org/10.1101/251579
  59. Carlsson DO, Hua K, Forsgren J, Mihranyan A (2014a) Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose. Int J Pharm 461:74–81PubMedCrossRefGoogle Scholar
  60. Carlsson L, Fall A, Chaduc I, Wågberg L, Charleux B, Malmström E, D’Agosto F, Lansalot M, Carlmark A (2014b) Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization. Polym Chem 5:6076–6086CrossRefGoogle Scholar
  61. Cavicchioli M, Corso CT, Coelho F, Mendes L, Saska S, Soares CP, Souza FO, Franchi LP, Capote TSO, Scarel-Caminaga RM, Messaddeq Y, Ribeiro SJL (2015) Characterization and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose membranes incorporated with ciprofloxacin: a potential material for use as therapeutic contact lens. World J Pharm Pharm Sci 4:1626–1647Google Scholar
  62. Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718CrossRefGoogle Scholar
  63. Chang C, Wang M (2013) Preparation of microfibrillated cellulose composites for sustained release of H2O2 or O2 for biomedical applications. ACS Sustain Chem Eng 1:1129–1134CrossRefGoogle Scholar
  64. Charpentier PA, Maguire A, Wan W k. (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252:6360–6367CrossRefGoogle Scholar
  65. Cheginia SP, Meamar R (2018) Varshosaz J (2018) Co- delivery of Venlafaxine and Doxycycline by films of cellulose nanofibers for diabetic foot ulcers. Pharm Updat 1:36–37Google Scholar
  66. Chen S, Huang Y (2015) Bacterial cellulose nanofibers decorated with phthalocyanine: preparation, characterization and dye removal performance. Mater Lett 142:235–237CrossRefGoogle Scholar
  67. Chen YM, Xi T, Zheng Y, Guo T, Hou J, Wan Y, Gao C (2009) In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J Bioact Compat Polym 24:137–145CrossRefGoogle Scholar
  68. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRefGoogle Scholar
  69. Chen X, Zhou R, Chen B, Chen J (2016) Nanohydroxyapatite/cellulose nanocrystals/silk fibroin ternary scaffolds for rat calvarial defect regeneration. RSC Adv 6:35684–35691CrossRefGoogle Scholar
  70. Chen C, Chen X, Zhang H, Zhang Q, Wang L, Li C, Dai B, Yang J, Liu J, Sun D (2017) Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture. Acta Biomater 55:434–442PubMedCrossRefGoogle Scholar
  71. Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872PubMedCrossRefGoogle Scholar
  72. Cheng F, Liu C, Wei X, Yan T, Li H, He J, Huang Y (2017a) Preparation and characterization of 2,2,6,6-tetramethylpiperidine-1- oxyl (TEMPO)-oxidized cellulose nanocrystal/alginate biodegradable composite dressing for hemostasis applications. ACS Sustain Chem Eng 5:3819–3828CrossRefGoogle Scholar
  73. Cheng M, Qin Z, Hu S, Dong S, Ren Z, Yu H (2017b) Achieving long-term sustained drug delivery for electrospun biopolyester nanofibrous membranes by introducing cellulose nanocrystals. ACS Biomater Sci Eng 3:1666–1676CrossRefGoogle Scholar
  74. Cheng L, Zhang D, Gu Z, Li Z, Hong Y, Li C (2018) Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films. Int J Biol Macromol 111:959–966PubMedCrossRefGoogle Scholar
  75. Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553CrossRefGoogle Scholar
  76. Chi-Fung LV, Dunn CK, Zhang Z, Deng Y, Qi HJ (2017) Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep 7:1–8CrossRefGoogle Scholar
  77. Chinga-Carrasco G, Syverud K (2014) Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl 29:423–432PubMedPubMedCentralCrossRefGoogle Scholar
  78. Chiulan I, Mihaela Panaitescu D, Nicoleta Frone A, Teodorescu M, Andi Nicolae C, Căşărică A, Tofan V, Sălăgeanu A (2016) Biocompatible polyhydroxyalkanoates/bacterial cellulose composites: preparation, characterization, and in vitro evaluation. J Biomed Mater Res Part A 104A:2576–2584CrossRefGoogle Scholar
  79. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36:143–206CrossRefGoogle Scholar
  80. Ciechańska D (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text East Eur 12:69–72Google Scholar
  81. Courtenay JC, Johns MA, Galembeck F, Deneke C, Lanzoni EM, Costa CA, Scott JL, Sharma RI (2017) Surface modified cellulose scaffolds for tissue engineering. Cellulose 24:253–267CrossRefGoogle Scholar
  82. Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870CrossRefGoogle Scholar
  83. Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose – the natural power to heal wounds. Biomaterials 27:145–151PubMedCrossRefGoogle Scholar
  84. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12PubMedCrossRefGoogle Scholar
  85. Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645PubMedCrossRefGoogle Scholar
  86. De France KJ, Yager KG, Chan KJW, Corbett B, Cranston ED, Hoare T (2017) Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes. Nano Lett 17:6487–6495PubMedCrossRefGoogle Scholar
  87. De Lima Fontes M, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, Dos Santos AM, Ribeiro SJL, Barud HS (2018) Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 179:126–134PubMedCrossRefGoogle Scholar
  88. De Macedo NL, Silva Matuda F da, Macedo LGS de, Monteiro ASF, Valera MC, Carvalho YR (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3:395–400Google Scholar
  89. de MT de Lima F, Pinto FCM, Andrade-da-Costa BL da S, Silva JGM da, Campos Júnior O, Aguiar JL de A (2017) Biocompatible bacterial cellulose membrane in dural defect repair of rat. J Mater Sci Mater Med 28:37PubMedCrossRefGoogle Scholar
  90. de Oliveira Barud HG, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, de Oliveira Junior OB, Ribeiro SJL (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420PubMedCrossRefGoogle Scholar
  91. De Olyveira GM, Valido DP, Costa LMM, Gois PBP, Filho LX, Basmaji P (2011) First otoliths/collagen/bacterial cellulose nanocomposites as a potential scaffold for bone tissue regeneration. J Biomater Nanobiotechnol 2:239–243CrossRefGoogle Scholar
  92. De Souza FC, Olival-Costa H, Da Silva L, Pontes PA, Lancellotti CLP (2011) Bacterial cellulose as laryngeal medialization material: an experimental study. J Voice 25:765–769PubMedCrossRefGoogle Scholar
  93. De Souza CF, Lucyszyn N, Woehl MA, Riegel-Vidotti IC, Borsali R, Sierakowski MR (2013) Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr Polym 93:144–153PubMedCrossRefGoogle Scholar
  94. Delmer DP, Amor Y (1995) Cellulose biosynthesis. Am Soc Plant Physiol 7:987–1000Google Scholar
  95. Di Z, Shi Z, Wajid Ullah M, Li S, Yang G (2017) A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). Int J Biol Macromol 105:638–644PubMedCrossRefGoogle Scholar
  96. Domingues RMA, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME (2015) Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 26:1571–1581PubMedCrossRefGoogle Scholar
  97. Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15:1560–1567PubMedCrossRefGoogle Scholar
  98. Dufresne A (2017) Current opinion in colloid & interface science cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8CrossRefGoogle Scholar
  99. Dufresne A (2018) Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos Trans R Soc A Math Phys Eng Sci 376:20170040CrossRefGoogle Scholar
  100. Dugan JM, Collins RF, Gough JE, Eichhorn SJ (2013) Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomater 9:4707–4715PubMedCrossRefGoogle Scholar
  101. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  102. El Achaby M, El Miri N, Aboulkas A, Zahouily M, Bilal E, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352PubMedCrossRefGoogle Scholar
  103. El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167PubMedCrossRefGoogle Scholar
  104. El-naggar ME, Abdelgawad AM, Tripathi A, Rojas OJ (2017) Curdlan cryogels reinforced with cellulose nanofibrils for controlled release. J Environ Chem Eng 5:5754–5761CrossRefGoogle Scholar
  105. Eming SA, Smola H, Krieg T (2002) Treatment of chronic wounds: state of the art and future concepts. Cells Tissues Organs 172:105–117PubMedCrossRefGoogle Scholar
  106. Esguerra M, Fink H, Laschke MW, Jeppsson A, Delbro D, Gatenholm P, Menger MD, Risberg B (2010) Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res Part A 93:140–149Google Scholar
  107. Eyholzer C, Borges De Couraça A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Månson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427PubMedCrossRefGoogle Scholar
  108. Fadel Picheth G, Luiz Pirich C, Rita Sierakowski M, Aurélio Woehl M, Novak Sakakibara C, Fernandes C, De Souza CF, Amado Martin A, da Silva R, De Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106CrossRefGoogle Scholar
  109. Fakes MG, Vakkalagadda BJ, Qian F, Desikan S, Gandhi RB, Lai C, Hsieh A, Franchini MK, Toale H, Brown J (2009) Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm 370:167–174PubMedCrossRefGoogle Scholar
  110. Fakhri A, Tahami S, Nejad PA (2017) Preparation and characterization of Fe3O4 -Ag 2O quantum dots decorated cellulose nano fibers as a carrier of anticancer drugs for skin cancer. J Photochem Photobiol B Biol 175:83–88CrossRefGoogle Scholar
  111. Fan M, Fu F (2017) Advanced high strength natural fibre composites in construction, 1st edn. Elsevier Ltd, DuxfordGoogle Scholar
  112. Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098PubMedCrossRefGoogle Scholar
  113. Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS (2013) Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C 33:1935–1944CrossRefGoogle Scholar
  114. Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRefGoogle Scholar
  115. Feng X, Yang Z, Rostom SSH, Dadmun M, Xie Y, Wang S (2017) Structural, mechanical, and thermal properties of 3D printed L-CNC/acrylonitrile butadiene styrene nanocomposites. J Appl Polym Sci 134:45082CrossRefGoogle Scholar
  116. Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297PubMedCrossRefGoogle Scholar
  117. Figueiredo AGPR, Figueiredo ARP, Alonso-varona A, Fernandes SCM, Palomares T, Rubio-azpeitia E, Barros-timmons A, Silvestre AJD, Neto CP, Freire CSR (2013) Biocompatible bacterial cellulose-Poly(2-hydroxyethyl methacrylate) nanocomposite films. Biomed Res Int 2013:1–14Google Scholar
  118. Figueiredo ARP, Figueiredo AGPR, Silva NHCS, Barros-timmons A, Almeida A, Silvestre AJD, Freire CSR (2015) Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate. Carbohydr Polym 123:443–453PubMedCrossRefGoogle Scholar
  119. Filpponen I, Argyropoulos DS (2015) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11(4):1060–1066CrossRefGoogle Scholar
  120. Fink H, Faxälv L, Molnár GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6:1125–1130PubMedCrossRefGoogle Scholar
  121. Fink H, Ahrenstedt L, Bodin A, Brumer H, Gatenholm P, Krettek A, Risberg B (2011) Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism – a promising modification for vascular grafts. J Tissue Eng Regen Med 5:454–463PubMedCrossRefGoogle Scholar
  122. Fiorati A, Turco G, Travan A, Caneva E, Pastori N, Cametti M, Punta C, Melone L (2017) Mechanical and drug release properties of sponges from cross-linked cellulose nanofibers. ChemPlusChem 82:848–858CrossRefGoogle Scholar
  123. Follain N, Marais MF, Montanari S, Vignon MR (2010) Coupling onto surface carboxylated cellulose nanocrystals. Polymer (Guildf) 51:5332–5344CrossRefGoogle Scholar
  124. Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264PubMedCrossRefGoogle Scholar
  125. Fontenot KR, Edwards JV, Haldane D, Pircher N, Liebner F, Condon BD, Qureshi H, Yager D (2017) Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: implications of material selection for dressing and protease sensor design. J Biomater Appl 32:622–637PubMedCrossRefGoogle Scholar
  126. Foong CY, Hamzah MSA, Razak SIA, Saidin S, Nayan NHM (2018) Influence of poly(lactic acid) layer on the physical and antibacterial properties of dry bacterial cellulose sheet for potential acute wound healing materials. Fibers Polym 19:263–271CrossRefGoogle Scholar
  127. Fortunati E, Puglia D, Luzi F, Santulli C, Kenny JM, Torre L (2013a) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohydr Polym 97:825–836PubMedCrossRefGoogle Scholar
  128. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013b) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230CrossRefGoogle Scholar
  129. Fox JD, Capadona JR, Marasco PD, Rowan SJ (2013) Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J Am Chem Soc 135:5167–5174PubMedCrossRefGoogle Scholar
  130. Fragal EH, Cellet TSP, Fragal VH, Companhoni MVP, Ueda-Nakamura T, Muniz EC, Silva R, Rubira AF (2016) Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers. Carbohydr Polym 152:734–746PubMedCrossRefGoogle Scholar
  131. Frey M, Widner D, Segmehl JS, Casdorff K, Keplinger T, Burgert I (2018) Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl Mater Interfaces 10:5030–5037PubMedCrossRefGoogle Scholar
  132. Fu L, Zhang Y, Li C, Wu Z, Zhuo Q, Huang X, Qiu G, Zhou P, Yang G (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22:12349–12357CrossRefGoogle Scholar
  133. Fu L, Zhou P, Zhang S, Yang G (2013) Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater Sci Eng C 33:2995–3000CrossRefGoogle Scholar
  134. Galkina OL, Ivanov VK, Agafonov AV, Seisenbaeva GA, Kessler VG (2015) Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. J Mater Chem B 3:1688–1698CrossRefGoogle Scholar
  135. Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  136. Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18:139–145CrossRefGoogle Scholar
  137. Gao J, Li Q, Chen W, Liu Y, Yu H (2014) Self-assembly of nanocellulose and indomethacin into hierarchically ordered structures with high encapsulation efficiency for sustained release applications. ChemPlusChem 79:725–731CrossRefGoogle Scholar
  138. Gimenez RB, Leonardi L, Cerrutti P, Amalvy J, Chiacchiarelli LM (2017) Improved specific thermomechanical properties of polyurethane nanocomposite foams based on castor oil and bacterial nanocellulose. J Appl Polym Sci 134:44982CrossRefGoogle Scholar
  139. Girouard NM, Xu S, Schueneman GT, Shofner ML, Meredith JC (2016) Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl Mater Interfaces 8:1458–1467PubMedCrossRefGoogle Scholar
  140. Goldschmidt E, Cacicedo M, Kornfeld S, Valinoti M, Ielpi M, Ajler PM, Yampolsky C, Rasmussen J, Castro GR, Argibay P (2016) Construction and in vitro testing of a cellulose dura mater graft. Neurol Res 38:25–31PubMedCrossRefGoogle Scholar
  141. Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H, Mohammadi M (2017) Poly(propylene imine) dendrimer-grafted nanocrystalline cellulose: doxorubicin loading and release behavior. Polym (UK) 117:287–294CrossRefGoogle Scholar
  142. Gonçalves S, Padrão J, Rodrigues IP, Silva JP, Sencadas V, Lanceros-Mendez S, Girão H, Dourado F, Rodrigues LR (2015) Bacterial cellulose as a support for the growth of retinal pigment epithelium. Biomacromolecules 16:1341–1351PubMedCrossRefGoogle Scholar
  143. Gonçalves S, Rodrigues IP, Padrão J, Silva JP, Sencadas V, Lanceros-Mendez S, Girão H, Gama FM, Dourado F, Rodrigues LR (2016) Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf B Biointerfaces 139:1–9PubMedCrossRefGoogle Scholar
  144. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61CrossRefGoogle Scholar
  145. Gorgieva S, Girandon L, Kokol V (2017) Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. Mater Sci Eng C 73:478–489CrossRefGoogle Scholar
  146. Gotta J, Shalom TB, Aslanoglou S, Cifuentes-Rius A, Voelcker NH, Elnathan R, Shoseyov O, Richter S (2018) Stable white light-emitting biocomposite films. Adv Funct Mater 28:1706967CrossRefGoogle Scholar
  147. Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer (Guildf) 45:1569–1575CrossRefGoogle Scholar
  148. Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615PubMedCrossRefGoogle Scholar
  149. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646PubMedCrossRefPubMedCentralGoogle Scholar
  150. Guo R, Lan Y, Xue W, Cheng B, Zhang Y, Wang C, Ramakrishna S (2017) Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J Tissue Eng Regen Med 11:3544–3555PubMedCrossRefGoogle Scholar
  151. Gutiérrez-hernández JM, Escobar-garcía DM, Escalante A, Flores H, González FJ, Gatenholm P, Toriz G (2017) In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater Sci Eng C 75:445–453CrossRefGoogle Scholar
  152. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542PubMedCrossRefGoogle Scholar
  153. Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F (2010) Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol Symp 294:64–74CrossRefGoogle Scholar
  154. Håkansson KMO, Henriksson IC, de la Peña Vázquez C, Kuzmenko V, Markstedt K, Enoksson P, Gatenholm P (2016) Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv Mater Technol 1:1600096CrossRefGoogle Scholar
  155. Hakkarainen T, Koivuniemi R, Kosonen M, Escobedo-lucea C, Sanz-garcia A, Vuola J, Valtonen J, Tammela P, Mäkitie A, Luukko K, Yliperttula M, Kavola H (2016) Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release 244:292–301PubMedCrossRefGoogle Scholar
  156. Halib N, Mohd Amin MCI, Ahmad I (2010) Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. J Appl Polym Sci 116:2920–2929Google Scholar
  157. Halib N, Mohd Amin MCI, Ahmad I, Abrami M, Fiorentino S, Farra R, Grassi G, Musiani F, Lapasin R, Grassi M (2014) Topological characterization of a bacterial cellulose-acrylic acid polymeric matrix. Eur J Pharm Sci 62:326–333PubMedCrossRefGoogle Scholar
  158. Hamdan MA, Adam F, Amin KNM (2018) Investigation of mixing time on carrageenan- cellulose nanocrystals(CNC) hard capsule for drug delivery carrier. Int J Innov Sci Res Technol 3:457–461Google Scholar
  159. Harris JP, Hess AE, Rowan SJ, Weder C, Zorman CA, Tyler DJ, Capadona JR (2011) In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes. J Neural Eng 8:046010PubMedPubMedCentralCrossRefGoogle Scholar
  160. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRefGoogle Scholar
  161. He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15:618–627PubMedCrossRefGoogle Scholar
  162. Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165PubMedCrossRefGoogle Scholar
  163. Hemraz UD, Campbell K a, Burdick JS, Ckless K, Boluk Y, Sunasee R (2015) Cationic poly(2-aminoethylmethacrylate) and poly (N- (2- aminoethylmethacrylamide)) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16:319–325PubMedCrossRefGoogle Scholar
  164. Heßler N, Klemm D (2009) Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 16:899–910CrossRefGoogle Scholar
  165. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173PubMedCrossRefGoogle Scholar
  166. Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47:2675–2686CrossRefGoogle Scholar
  167. Hossain KMZ, Hasan MS, Boyd D, Rudd CD, Ahmed I, Thielemans W (2014) Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromolecules 15:1498–1506PubMedCrossRefGoogle Scholar
  168. Hou A, Zhou M, Wang X (2009) Preparation and characterization of durable antibacterial cellulose biomaterials modified with triazine derivatives. Carbohydr Polym 75:328–332CrossRefGoogle Scholar
  169. Hou L, Fang J, Wang W, Xie Z, Dong D, Zhang N (2017) Indocyanine green-functionalized bottle brushes of poly(2-oxazoline) on cellulose nanocrystals for photothermal cancer therapy. J Mater Chem B 5:3348–3354CrossRefGoogle Scholar
  170. Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y (2018) Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Mater Res Part A 106A:1288–1298CrossRefGoogle Scholar
  171. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513CrossRefGoogle Scholar
  172. Hu Y, Catchmark JM (2011a) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835–2845PubMedCrossRefGoogle Scholar
  173. Hu Y, Catchmark JM (2011b) Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res Part B 97:114–123CrossRefGoogle Scholar
  174. Hu H, Yuan W, Liu FS, Cheng G, Xu FJ, Ma J (2015) Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Appl Mater Interfaces 7:8942–8951PubMedCrossRefGoogle Scholar
  175. Hu H, Hou X, Wang X, Nie J, Cai Q, Xu F (2016a) Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications. Polym Chem 7:3107–3116CrossRefGoogle Scholar
  176. Hu Y, Zhu Y, Zhou X, Ruan C, Pan H, Catchmark JM (2016b) Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair. J Mater Chem B 4:1235–1246CrossRefGoogle Scholar
  177. Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1:2976–2984CrossRefGoogle Scholar
  178. Huang J-W, Lv X-G, Li Z, Song L-J, Feng C, Xie M-K, Li C, Li H-B, Wang J-H, Zhu W-D, Chen S-Y, Wang H-P, Xu Y-M (2015) Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed Mater 10:055005PubMedCrossRefGoogle Scholar
  179. Huey DJ, Hu JC, Athanasiou K a (2012) Unlike Bone, cartilage regeneration remains elusive. Science (80- ) 338:917–921CrossRefGoogle Scholar
  180. Hutchens SA, Benson RS, Evans BR, Rawn CJ, O’Neill H (2009) A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration. Cellulose 16:887–898CrossRefGoogle Scholar
  181. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124PubMedCrossRefGoogle Scholar
  182. Iguchi M, Yamanaka S, Budhiono a. (2000) Bacterial cellulose – a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  183. Inai NH, Lewandowska AE, Ghita OR, Eichhorn SJ (2018) Interfaces in polyethylene oxide modified cellulose nanocrystal – polyethylene matrix composites. Compos Sci Technol 154:128–135CrossRefGoogle Scholar
  184. Jack AA, Nordli HR, Powell LC, Powell KA, Kishnani H, Olav Johnsen P, Pukstad B, Thomas DW, Chinga-carrasco G, Hill KE (2017) The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Carbohydr Polym 157:1955–1962PubMedCrossRefGoogle Scholar
  185. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321–330PubMedPubMedCentralGoogle Scholar
  186. Jampala SN, Sarmadi M, Somers EB, Wong ACL, Denes FC (2008) Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Langmuir 24:8583–8591PubMedCrossRefGoogle Scholar
  187. Jia H, Jia Y, Wang J, Hu Y, Zhang Y, Jia S (2009) Potentiality of bacterial cellulose as the scaffold of tissue engineering of cornea. In: 2009 2nd international conference on biomedical engineering and informatics. IEEE, Tianjin, pp 1–5Google Scholar
  188. Jiang T, James R, Kumbar SG, Laurencin CT (2014) Chitosan as a biomaterial. In: Natural and synthetic biomedical polymers, 1st edn. Elsevier, Burlington, pp 91–113CrossRefGoogle Scholar
  189. Jiang Y, Zhou J, Yang Z, Liu D, Xv X, Zhao G, Shi H, Zhang Q (2018) Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. J Mater Sci 53:11883–11900CrossRefGoogle Scholar
  190. Jinga SI, Voicu G, Stoica-Guzun A, Stroescu M, Grumezescu AM, Bleotu C (2014) Biocellulose nanowhiskers cement composites for endodontic use. Dig J Nanomater Biostructures 9:543–550Google Scholar
  191. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRefGoogle Scholar
  192. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:41719CrossRefGoogle Scholar
  193. Jorfi M, Roberts MN, Foster EJ, Weder C (2013) Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. ACS Appl Mater Interfaces 5:1517–1526PubMedCrossRefGoogle Scholar
  194. Juncu G, Stoica-Guzun A, Stroescu M, Isopencu G, Jinga SI (2016) Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. Int J Pharm 510:485–492PubMedCrossRefGoogle Scholar
  195. Kampeerapappun P (2016) The electrospun polyhydroxybutyrate fibers reinforced with cellulose nanocrystals: morphology and properties. J Appl Polym Sci 133:43273CrossRefGoogle Scholar
  196. Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr Polym 86:192–201CrossRefGoogle Scholar
  197. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polym (UK) 132:368–393CrossRefGoogle Scholar
  198. Karim Z, Hakalahti M, Tammelin T, Mathew AP (2017) In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv 7:5232–5241CrossRefGoogle Scholar
  199. Kashani Rahimi S, Aeinehvand R, Kim K, Otaigbe JU (2017) Structure and biocompatibility of bioabsorbable nanocomposites of aliphatic-aromatic copolyester and cellulose nanocrystals. Biomacromolecules 18:2179–2194PubMedCrossRefGoogle Scholar
  200. Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20:1275–1292CrossRefGoogle Scholar
  201. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637CrossRefGoogle Scholar
  202. Keskin Z, Urkmez AS, Hames EE (2017) Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater Sci Eng C 75:1144–1153CrossRefGoogle Scholar
  203. Khabibullin A, Alizadehgiashi M, Khuu N, Prince E, Tebbe M, Kumacheva E (2017) Injectable shear-thinning fluorescent hydrogel formed by cellulose nanocrystals and graphene quantum dots. Langmuir 33:12344–12350PubMedCrossRefGoogle Scholar
  204. Khalid A, Khan R, Ul-islam M, Khan T, Wahid F (2017a) Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 164:214–221PubMedCrossRefGoogle Scholar
  205. Khalid A, Ullah H, Ul-islam M, Khan R, Khan S, Ahmad F, Khan T, Wahid F (2017b) Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv 7:47662–47668CrossRefGoogle Scholar
  206. Khan S, UI-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579CrossRefGoogle Scholar
  207. Khoshkava V, Kamal MR (2014) Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol 261:288–298CrossRefGoogle Scholar
  208. Kim J, Cai Z, Chen Y (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1:011006CrossRefGoogle Scholar
  209. Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744CrossRefGoogle Scholar
  210. Kim J, Kim SW, Park S, Lim KT, Seonwoo H, Kim Y, Hong BH, Choung YH, Chung JH (2013) Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Adv Healthc Mater 2:1525–1531PubMedCrossRefGoogle Scholar
  211. Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155PubMedCrossRefGoogle Scholar
  212. Kirdponpattara S, Phisalaphong M, Kongruang S (2017) Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications. Carbohydr Polym 177:361–368PubMedCrossRefGoogle Scholar
  213. Klemm D (2006) Polysaccharides II, advances in polymer science. Springer US, New YorkCrossRefGoogle Scholar
  214. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  215. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  216. Ko SW, Soriano JPE, Lee JY, Unnithan AR, Park CH, Kim CS (2018) Nature derived scaffolds for tissue engineering applications: design and fabrication of a composite scaffold incorporating chitosan-g-D,L-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf. Int J Biol Macromol 110:504–513PubMedCrossRefGoogle Scholar
  217. Kolakovic R, Peltonen L, Laaksonen T, Putkisto K, Laukkanen A, Hirvonen J (2011) Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech 12:1366–1373PubMedPubMedCentralCrossRefGoogle Scholar
  218. Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012a) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430:47–55PubMedCrossRefGoogle Scholar
  219. Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012b) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82:308–315PubMedCrossRefGoogle Scholar
  220. Kolakovic R, Peltonen L, Laukkanen A, Hellman M, Laaksonen P, Linder MB, Hirvonen J, Laaksonen T (2013) Evaluation of drug interactions with nanofibrillar cellulose. Eur J Pharm Biopharm 85:1238–1244PubMedCrossRefGoogle Scholar
  221. Kovalenko A (2014) Predictive multiscale modeling of nanocellulose based materials and systems. IOP Conf Ser Mater Sci Eng 64:012040CrossRefGoogle Scholar
  222. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534PubMedPubMedCentralCrossRefGoogle Scholar
  223. Krontiras P, Gatenholm P, Hagg DA (2015) Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J Biomed Mater Res Part B Appl Biomater 103B:195–203CrossRefGoogle Scholar
  224. Kukharenko O, Bardeau J, Zaets I, Ovcharenko L, Tarasyuk O, Porhyn S, Mischenko I, Vovk A, Rogalsky S, Kozyrovska N (2014) Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride. Eur Polym J 60:247–254CrossRefGoogle Scholar
  225. Kulkarni PK, Anil Dixit S, Singh UB (2012) Evaluation of bacterial cellulose produced fron Acetobacter xylinum as pharmacutical excipient. Am J Drug Discov Dev 2:72–86CrossRefGoogle Scholar
  226. Kumar A, Rao KM, Han SS (2017) Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym Test 63:214–225CrossRefGoogle Scholar
  227. Kurniawan H, Lai JT, Wang MJ (2012) Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose 19:1975–1988CrossRefGoogle Scholar
  228. Kuzmenko V, Sämfors S, Hägg D, Gatenholm P (2013) Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion. Mater Sci Eng C 33:4599–4607CrossRefGoogle Scholar
  229. Laitinen O, Suopajärvi T, Österberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9:25029–25037PubMedCrossRefGoogle Scholar
  230. Lang N, Merkel E, Fuchs F, Schumann D, Klemm D, Kramer F, Mayer-Wagner S, Schroeder C, Freudenthal F, Netz H, Kozlik-Feldmann R, Sigler M (2015) Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model. Eur J Cardio-Thoracic Surg 47:1013–1021CrossRefGoogle Scholar
  231. Lapidot S, Meirovitch S, Sharon S, Heyman A, Kaplan DL, Shoseyov O (2012) Clues for biomimetics from natural composite materials. Nanomedicine 7:1409–1423PubMedCrossRefGoogle Scholar
  232. Laranjeira M, Domingues RMA, Costa-Almeida R, Reis RL, Gomes ME (2017) 3D mimicry of native-tissue-fiber architecture guides tendon-derived cells and adipose stem cells into artificial tendon constructs. Small 13:1700689CrossRefGoogle Scholar
  233. Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580CrossRefGoogle Scholar
  234. Lavoine N, Desloges I, Bras J (2014) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537PubMedCrossRefGoogle Scholar
  235. Lee KY, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRefGoogle Scholar
  236. Lee S, An S, Lim Y, Huh J (2017) The efficacy of electron beam irradiated bacterial cellulose membranes as compared with collagen membranes on guided bone regeneration in peri-implant bone defects. Materials (Basel) 10:1018CrossRefGoogle Scholar
  237. Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315PubMedCrossRefGoogle Scholar
  238. Leitao AF, Gupta S, Silva JP, Reviakine I, Gama M (2013) Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids Surf B Biointerfaces 111:493–502PubMedCrossRefGoogle Scholar
  239. Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642CrossRefGoogle Scholar
  240. Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504CrossRefGoogle Scholar
  241. Li W, Guo R, Lan Y, Zhang Y, Xue W, Zhang Y (2014) Preparation and properties of cellulose nanocrystals reinforced collagen composite films. J Biomed Mater Res Part A 102:1131–1139CrossRefGoogle Scholar
  242. Li W, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y (2015a) In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. J Biomater Appl 29:882–893PubMedCrossRefGoogle Scholar
  243. Li Y, Jiang H, Zheng W, Gong N, Chen L, Jiang X, Yang G (2015b) Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J Mater Chem B 3:3498–3507CrossRefGoogle Scholar
  244. Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X (2017) Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small 13:1–10Google Scholar
  245. Li VCF, Mulyadi A, Dunn CK, Deng Y, Qi HJ (2018a) Direct ink write 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties. ACS Sustain Chem Eng 6:2011–2022CrossRefGoogle Scholar
  246. Li Y, Fu Q, Yang X, Berglund L (2018b) Transparent wood for functional and structural applications. Philos Trans R Soc A Math Phys Eng Sci 376:pii: 20170182CrossRefGoogle Scholar
  247. Liebert T, Kostag M, Wotschadlo J, Heinze T (2011) Stable cellulose nanospheres for cellular uptake. Macromol Biosci 11:1387–1392PubMedCrossRefGoogle Scholar
  248. Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583CrossRefGoogle Scholar
  249. Lin N, Huang J, Chang PR, Feng L, Yu J (2011a) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B Biointerfaces 85:270–279PubMedCrossRefGoogle Scholar
  250. Lin YK, Chen KH, Ou KL, Liu M (2011b) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26:508–518CrossRefGoogle Scholar
  251. Lin N, Bruzzese C, Dufresne A (2012a) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959PubMedCrossRefGoogle Scholar
  252. Lin N, Huang J, Dufresne A (2012b) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274PubMedCrossRefGoogle Scholar
  253. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013a) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611PubMedCrossRefGoogle Scholar
  254. Lin Z, Guan Z, Huang Z (2013b) New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization. Ind Eng Chem Res 52:2869–2874CrossRefGoogle Scholar
  255. Lin Q, Zheng Y, Ren L, Wu J, Wang H, An J, Fan W (2014) Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with a crosslinking Semi-interpenetrating network. J Appl Polym Sci 131:1–9CrossRefGoogle Scholar
  256. Lin N, Gèze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl Mater Interfaces 8:6880–6889PubMedCrossRefGoogle Scholar
  257. Lin S-P, Kung H-N, Tsai Y-S, Tseng T-N, Hsu K-D, Cheng KC (2017) Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellulose 24:4927–4937CrossRefGoogle Scholar
  258. Liu P, Borrell PF, Božič M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185PubMedCrossRefGoogle Scholar
  259. Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willför S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143CrossRefGoogle Scholar
  260. Liu L, Yang X, Ye L, Xue D, Liu M, Jia S, Hou Y, Chu L-Q, Zhong C (2017) Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydr Polym 174:1078–1086PubMedCrossRefGoogle Scholar
  261. Liu H, Zhou C, Liu X, Xu Y, Geng S, Chen Y, Wei C, Yu C (2018a) PMMA@SCNC composite microspheres prepared from pickering emulsion template as curcumin delivery carriers. J Appl Polym Sci 135:46127CrossRefGoogle Scholar
  262. Liu Y, Sui Y, Liu C, Liu C, Wu M, Li B, Li Y (2018b) A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr Polym 188:27–36PubMedCrossRefGoogle Scholar
  263. Liyaskina E, Revin V, Paramonova E, Nazarkina M, Pestov N, Revina N, Kolesnikova S (2017) Nanomaterials from bacterial cellulose for antimicrobial wound dressing. J Phys Conf Ser 784:1–7CrossRefGoogle Scholar
  264. Löbmann K, Svagan AJ (2017) Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. Int J Pharm 533:285–297PubMedCrossRefGoogle Scholar
  265. Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI (2018) Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep 8:2875PubMedPubMedCentralCrossRefGoogle Scholar
  266. Loures BR (2004) Endoprosthesis process to obtain and methods used. Google patentsGoogle Scholar
  267. Lu T, Li Q, Chen W, Yu H (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138CrossRefGoogle Scholar
  268. Luan J, Wu J, Zheng Y, Song W, Wang G, Guo J, Ding X (2012) Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed Mater 7:1–11CrossRefGoogle Scholar
  269. Ludwicka K, Jedrzejczak-Krzepkowska M, Kubiak K, Kolodziejczyk M, Pankiewicz T, Bielecki S (2016) Medical and cosmetic applications of bacterial nanocellulose. In: Bacterial nanocellulose. Elsevier, Amsterdam, pp 145–165CrossRefGoogle Scholar
  270. Luo H, Xiong G, Hu D, Ren K, Yao F, Zhu Y, Gao C, Wan Y (2013) Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater Chem Phys 143:373–379CrossRefGoogle Scholar
  271. Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y (2017) Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17:249–254CrossRefGoogle Scholar
  272. Lv X, Yang J, Feng C, Li Z, Chen S, Xie M, Huang J, Li H, Wang H, Xu Y (2016) Bacterial cellulose-based biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering. ACS Biomater Sci Eng 2:19–29CrossRefGoogle Scholar
  273. Lv X, Feng C, Liu Y, Peng X, Chen S, Xiao D, Wang ZL, Xu Y, Lu M (2018) A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics 8:3153–3163PubMedPubMedCentralCrossRefGoogle Scholar
  274. Ma S, Akbari M, Jahani-kadosarai M (2017) Assessing the loading and release of metronidazole from bacterial cellulose film as a pharmaceutical dressing. J Kashan Univ Med Sci 21:240–246Google Scholar
  275. Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JHT (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2:2924–2932PubMedCrossRefGoogle Scholar
  276. Male KB, Leung ACW, Montes J, Kamen A, Luong JHT (2012) Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale 4:1373PubMedCrossRefGoogle Scholar
  277. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  278. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633CrossRefGoogle Scholar
  279. Maria LCS, Santos ALC, Oliveira PC, Valle ASS, Barud HS, Messaddeq Y, Ribeiro SJL (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros 20:72–77CrossRefGoogle Scholar
  280. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806CrossRefGoogle Scholar
  281. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496PubMedCrossRefGoogle Scholar
  282. Markstedt K, Escalante A, Toriz G, Gatenholm P (2017) Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing. ACS Appl Mater Interfaces 9:40878–40886PubMedCrossRefGoogle Scholar
  283. Martínez Ávila H, Schwarz S, Feldmann EM, Mantas A, Von Bomhard A, Gatenholm P, Rotter N (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435PubMedCrossRefGoogle Scholar
  284. Martínez Ávila H, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJVM, Stok KS, Gatenholm P (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133PubMedCrossRefGoogle Scholar
  285. Martínez H, Brackmann C, Enejder A, Gatenholm P (2012) Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res Part A 100(A):948–957CrossRefGoogle Scholar
  286. Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298CrossRefGoogle Scholar
  287. Mathew AP, Oksman K, Pierron D, Harmand MF (2013) Biocompatible fibrous networks of cellulose nanofibres and collagen crosslinked using genipin: potential as artificial ligament/tendons. Macromol Biosci 13:289–298PubMedCrossRefGoogle Scholar
  288. Mauricio MR, da Costa PG, Haraguchi SK, Guilherme MR, Muniz EC, Rubira AF (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. Carbohydr Polym 115:715–722PubMedCrossRefGoogle Scholar
  289. Meesorn W, Shirole A, Vanhecke D, De Espinosa LM, Weder C (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374CrossRefGoogle Scholar
  290. Meirovitch S, Shtein Z, Ben-Shalom T, Lapidot S, Tamburu C, Hu X, Kluge JA, Raviv U, Kaplan DL, Shoseyov O (2016) Spider silk-CBD-cellulose nanocrystal composites: mechanism of assembly. Int J Mol Sci 17:1573PubMedCentralCrossRefPubMedGoogle Scholar
  291. Mello LR, Feltrin LT, Fontes Neto PT, Ferraz FAP (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–150PubMedCrossRefGoogle Scholar
  292. Meneguin AB, Cury BSF, Dos Santos AM, Faza Franco D, Barud HS, Da Silva Filho EC (2017) Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym 157:1013–1023PubMedCrossRefGoogle Scholar
  293. Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220PubMedCrossRefGoogle Scholar
  294. Messaddeq Y, Ribeiro SJL, Thomazini W (2008) Contact lens for therapy, method and apparatus for their production and use. Brazil patent BR, PI0603704-6Google Scholar
  295. Mihaela Jipa I, Dobre L, Stroescu M, Stoica-Guzun A, Jinga S, Dobre T (2012) Preparation and characterization of bacterial cellulose-poly(vinyl alcohol) films with antimicrobial properties. Mater Lett 66:125–127CrossRefGoogle Scholar
  296. Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79:245–253PubMedCrossRefGoogle Scholar
  297. Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol-bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res Part B Appl Biomater 86:444–452PubMedCrossRefGoogle Scholar
  298. Mo Y, Guo R, Zhang Y, Xue W, Cheng B, Zhang Y (2017) Controlled dual delivery of angiogenin and curcumin by electrospun nanofibers for skin regeneration. Tissue Eng Part A 23:597–608PubMedCrossRefGoogle Scholar
  299. Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Fadilah N (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320PubMedCrossRefGoogle Scholar
  300. Mohammadi H (2011) Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc Inst Mech Eng Part H J Eng Med 225:718–722CrossRefGoogle Scholar
  301. Mohammadnejad J, Yazdian F, Omidi M, Rostami AD, Rasekh B, Fathinia A (2018) Graphene oxide/silver nanohybrid: optimization, antibacterial activity and its impregnation on bacterial cellulose as a potential wound dressing based on GO-Ag nanocomposite-coated BC. Eng Life Sci 18:298–307CrossRefGoogle Scholar
  302. Mohanta V, Madras G, Patil S (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces 6:20093–20101PubMedCrossRefGoogle Scholar
  303. Mohd Amin MCI, Abadi AG, Ahmad N, Katas H, Jamal JA (2012a) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 41:561–568Google Scholar
  304. Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012b) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473CrossRefGoogle Scholar
  305. Möller T, Amoroso M, Hägg D, Brantsing C, Rotter N, Apelgren P, Lindahl A, Kölby L, Gatenholm P (2017) In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs. Plast Reconstr Surg Glob Open 5:e1227PubMedPubMedCentralCrossRefGoogle Scholar
  306. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRefGoogle Scholar
  307. Moraes PRF de S, Saska S, Barud H, Lima LR de, Martins V da CA, Plepis AM de G, Ribeiro SJL, Gaspar AMM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res 19:106–116CrossRefGoogle Scholar
  308. Morits M, McKee JR, Majoinen J, Malho JM, Houbenov N, Seitsonen J, Laine J, Gröschel AH, Ikkala O (2017) Polymer brushes on cellulose nanofibers: modification, SI-ATRP, and unexpected degradation processes. ACS Sustain Chem Eng 5:7642–7650CrossRefGoogle Scholar
  309. Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471:45–55PubMedCrossRefGoogle Scholar
  310. Muangman P, Opasanon S, Suwanchot S, Thangthed O (2011) Efficiency of microbial cellulose dressing in partial-thickness burn wounds. J Am Col Certif Wound Spec 3:16–19PubMedPubMedCentralGoogle Scholar
  311. Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592PubMedCrossRefGoogle Scholar
  312. Muller D, Silva JP, Rambo CR, GMO B, Dourado F, Gama FM (2013) Neuronal cells behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds. J Biomater Sci Polym Ed 24:1368–1377PubMedCrossRefGoogle Scholar
  313. Müller A, Zink M, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2014) Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Adv 4:57173–57184CrossRefGoogle Scholar
  314. Nakaya T, Li YJ (1999) Phospholipid polymers. Prog Polym Sci 24:143–181CrossRefGoogle Scholar
  315. Naseri N, Mathew AP, Girandon L, Frohlich M, Oksman K (2015) Porous electrospun nanocomposite mats based on chitosan – cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22:521–534CrossRefGoogle Scholar
  316. Naseri N, Poirier J-M, Girandon L, Fröhlich M, Oksman K, Mathew AP (2016) 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 6:5999–6007CrossRefGoogle Scholar
  317. Nasseri R, Mohammadi N (2014) Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr Polym 106:432–439PubMedCrossRefGoogle Scholar
  318. Ndong Ntoutoume GMA, Grassot V, Brégier F, Chabanais J, Petit J, Granet R, Sol V (2017) PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents – synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym 164:258–267PubMedCrossRefGoogle Scholar
  319. Nguyen JK, Park DJ, Skousen JL, Hess-Dunning AE, Tyler DJ, Rowan SJ, Weder C, Capadona JR (2014) Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J Neural Eng 11:056014PubMedPubMedCentralCrossRefGoogle Scholar
  320. Nilsson T, Rowell R (2012) Historical wood – structure and properties. J Cult Herit 13:S5–S9CrossRefGoogle Scholar
  321. Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21PubMedCrossRefGoogle Scholar
  322. Ninan N, Muthiah M, Park IK, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98:877–885PubMedCrossRefGoogle Scholar
  323. Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429CrossRefGoogle Scholar
  324. Novaes AB Jr, Novaes AB, Grisi MF, Soares UN, Gabarra F (1993) Genfiflex, an alkali-cellulose membrane for GTR: histologic observations. Braz Dent J 4:65–71Google Scholar
  325. Ntoutoume GMAN, Granet R, Mbakidi JP, Brégier F, Léger DY, Fidanzi-Dugas C, Lequart V, Joly N, Liagre B, Chaleix V, Sol V (2016) Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg Med Chem Lett 26:941–945CrossRefGoogle Scholar
  326. Numata Y, Mazzarino L, Borsali R (2015) A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int J Pharm 486:217–225PubMedCrossRefGoogle Scholar
  327. Nurani M, Akbari V, Taheri A (2017) Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials. Carbohydr Polym 165:322–333PubMedCrossRefGoogle Scholar
  328. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Composites: part A review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18CrossRefGoogle Scholar
  329. Oliveira Barud HG, HDS B, Cavicchioli M, Do Amaral TS, De Oliveira Junior OB, Santos DM, De Oliveira Almeida Petersen AL, Celes F, Borges VM, De Oliveira CI, De Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJL (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51PubMedCrossRefGoogle Scholar
  330. Olyveira GM, Acasigua GAX, Costa LMM, Scher CR, Filho LX, Pranke PHL, Basmaji P (2013) Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine. J Biomed Nanotechnol 9:1370–1377PubMedCrossRefGoogle Scholar
  331. Onofrei M, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications, and educational aspects. Formatex Research Center, Badajoz, pp 108–120Google Scholar
  332. Ooi SY, Ahmad I, Mohd Amin MCI (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crop Prod 93:227–234CrossRefGoogle Scholar
  333. Orasugh JT, Saha NR, Rana D, Sarkar G, Mollick MMR, Chattoapadhyay A, Mitra BC, Mondal D, Ghosh SK, Chattopadhyay D (2018) Jute cellulose nano- fibrils/hydroxypropylmethylcellulose nanocomposite: a novel material with potential for application in packaging and transdermal drug delivery system. Ind Crop Prod 112:633–643CrossRefGoogle Scholar
  334. Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941PubMedCrossRefGoogle Scholar
  335. Palaganas NB, Mangadlao JD, De Leon ACC, Palaganas JO, Pangilinan KD, Lee YJ, Advincula RC (2017) 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography. ACS Appl Mater Interfaces 9:34314–34324PubMedCrossRefGoogle Scholar
  336. Palaninathan V, Raveendran S, Rochani AK, Chauhan N, Sakamoto Y, Ukai T, Maekawa T, Sakthi Kumar D (2018) Bioactive bacterial cellulose sulfate electrospun nanofibers for tissue engineering applications. J Tissue Eng Regen Med 12:1634–1645PubMedCrossRefGoogle Scholar
  337. Pandey M, Mohd Amin MCI, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci 2013:905471CrossRefGoogle Scholar
  338. Pandey M, Mohamad N, Low W, Martin C, Mohd Amin MCI (2017) Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds. Drug Deliv Transl Res 7:89–99PubMedCrossRefGoogle Scholar
  339. Park SU, Lee BK, Kim MS, Park KK, Sung WJ, Kim HY, Han DG, Shim JS, Lee YJ, Kim SH, Kim IH, Park DH (2012) The possibility of microbial cellulose for dressing and scaffold materials. Int Wound J 11:35–43PubMedCrossRefGoogle Scholar
  340. Pattison MA, Wurster S, Webster TJ, Haberstroh KM (2005) Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26:2491–2500PubMedCrossRefGoogle Scholar
  341. Paukkonen H, Kunnari M, Laurén P, Hakkarainen T, Auvinen V, Oksanen T, Koivuniemi R, Yliperttula M, Laaksonen T (2017a) Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int J Pharm 532:269–280PubMedCrossRefGoogle Scholar
  342. Paukkonen H, Ukkonen A, Szilvay G, Yliperttula M, Laaksonen T (2017b) Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. Eur J Pharm Sci 100:238–248PubMedCrossRefGoogle Scholar
  343. Pavaloiu R, Stoica-guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)– chitosan – bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124PubMedCrossRefGoogle Scholar
  344. Pawar AA, Saada G, Cooperstein I, Larush L, Jackman JA, Tabaei SR, Cho NJ, Magdassi S (2016) High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci Adv 2:1–8CrossRefGoogle Scholar
  345. Pereda M, Kissi N El, Dufresne A (2014) Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide). ACS Appl Mater Interfaces 6:9365–9375PubMedCrossRefGoogle Scholar
  346. Pertile RAN, Andrade FK, Alves C Jr, Gama M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr Polym 82:692–698CrossRefGoogle Scholar
  347. Pertile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28:526–532PubMedCrossRefGoogle Scholar
  348. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286PubMedCrossRefGoogle Scholar
  349. Picheth GF, Sierakowski MR, Woehl MA, Ono L, Cofré AR, Vanin LP, Pontarolo R, De Freitas RA (2014) Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films. J Pharm Sci 103:3958–3965PubMedCrossRefGoogle Scholar
  350. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112CrossRefGoogle Scholar
  351. Poonguzhali R, Basha SK, Kumari VS (2017) Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. Int J Biol Macromol 105:111–120PubMedCrossRefGoogle Scholar
  352. Pooyan P, Tannenbaum R, Garmestani H (2012) Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater 7:50–59PubMedCrossRefGoogle Scholar
  353. Pooyan P, Kim IT, Jacob KI, Tannenbaum R, Garmestani H (2013) Design of a cellulose-based nanocomposite as a potential polymeric scaffold in tissue engineering. Polym (United Kingdom) 54:2105–2114Google Scholar
  354. Popescu MC (2017) Structure and sorption properties of CNC reinforced PVA films. Int J Biol Macromol 101:783–790PubMedCrossRefGoogle Scholar
  355. Powell LC, Khan S, Chinga-Carrasco G, Wright CJ, Hill KE, Thomas DW (2016) An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr Polym 137:191–197PubMedCrossRefGoogle Scholar
  356. Prince E, Alizadehgiashi M, Campbell M, Khuu N, Albulescu A, De France K, Ratkov D, Li Y, Hoare T, Kumacheva E (2018) Patterning of structurally anisotropic composite hydrogel sheets. Biomacromolecules 19:1276–1284PubMedCrossRefGoogle Scholar
  357. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer (Guildf) 49:1885–1891CrossRefGoogle Scholar
  358. Qiao H, Guo T, Zheng Y, Zhao L, Sun Y, Liu Y, Xie Y (2018) A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell. Carbohydr Polym 184:323–332PubMedCrossRefGoogle Scholar
  359. Qing W, Wang Y, Wang Y, Zhao D, Liu X, Zhu J (2016) The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl Surf Sci 366:404–409CrossRefGoogle Scholar
  360. Qiu Y, Qiu L, Cui J, Wei Q (2016) Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C 59:303–309CrossRefGoogle Scholar
  361. Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21:3585–3595CrossRefGoogle Scholar
  362. Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554CrossRefGoogle Scholar
  363. Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650CrossRefGoogle Scholar
  364. Rangaswamy BE, Vanitha KP (2017) Tridax procumbens leaf extracted based bacterial cellulose for wound healing. Asian J Microbiol Biotechnol 2:9–14Google Scholar
  365. Rao KM, Kumar A, Han SS (2017a) Poly(acrylamidoglycolic acid) nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium. Polym Test 64:175–182CrossRefGoogle Scholar
  366. Rao KM, Kumar A, Han SS (2017b) Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int J Biol Macromol 101:165–171CrossRefGoogle Scholar
  367. Rescignano N, Fortunati E, Montesano S, Emiliani C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym 99:47–58PubMedCrossRefGoogle Scholar
  368. Rigotti D, Duc V, Nguyen H, Cataldi A, Pegoretti A (2018) Polyvinyl alcohol reinforced crystalline nanocellulose in 3D printing application. Mater Today Commun 15:1–8CrossRefGoogle Scholar
  369. Rivkin A, Abitbol T, Nevo Y, Verker R, Lapidot S, Komarov A, Veldhuis SC, Zilberman G, Reches M, Cranston ED, Shoseyov O (2015) Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals. Ind Biotechnol 11:44–58CrossRefGoogle Scholar
  370. Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134CrossRefGoogle Scholar
  371. Roemhild K, Wiegand C, Hipler U, Heinze T (2013) Novel bioactive amino-functionalized cellulose nanofibers. Macromol Rapid Commun 34:1767–1771PubMedCrossRefGoogle Scholar
  372. Rogstad Nordli H, Chinga-carrasco G, Mari Rokstad A, Pukstad B (2016) Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr Polym 150:65–73CrossRefGoogle Scholar
  373. Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183PubMedCrossRefGoogle Scholar
  374. Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446PubMedCrossRefGoogle Scholar
  375. Rueda L, Saralegi A, Fernández-d’Arlas B, Zhou Q, Alonso-Varona A, Berglund LA, Mondragon I, Corcuera MA, Eceiza A (2013) In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation. Cellulose 20:1819–1828CrossRefGoogle Scholar
  376. Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355CrossRefGoogle Scholar
  377. Saibuatong O ard, Phisalaphong M (2010) Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460CrossRefGoogle Scholar
  378. Saïdi L, Vilela C, Oliveira H, Silvestre AJD, Freire CSR (2017) Poly(N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. Carbohydr Polym 169:357–365PubMedCrossRefGoogle Scholar
  379. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989PubMedCrossRefGoogle Scholar
  380. Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Asp 289:219–225CrossRefGoogle Scholar
  381. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691PubMedCrossRefGoogle Scholar
  382. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491PubMedCrossRefGoogle Scholar
  383. Salata LA, Hatton PV, Devlin AJ, Craig GT, Brook IM (2001) In vitro and in vivo evaluation of e-PTFE and alkali-cellulose membranes for guided bone regeneration. Clin Oral Implants Res 12:62–68PubMedCrossRefGoogle Scholar
  384. Salgado AJ, Oliveira JM, Martins A, Teixeira FG, Silva NA, Neves NM, Sousa N, Reis RL (2013) Tissue engineering and regenerative medicine. In: Elsevier. Elsevier Inc., London, pp 1–33Google Scholar
  385. Sampaio LMP, Padrão J, Faria J, Silva JP, Silva CJ, Dourado F, Zille A (2016) Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties. Carbohydr Polym 145:1–12PubMedCrossRefGoogle Scholar
  386. Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362PubMedPubMedCentralCrossRefGoogle Scholar
  387. Saska S, Pigossi SC, Oliveira GJPL, Teixeira LN, Capela MV, Gonçalves A, de Oliveira PT, Messaddeq Y, Ribeiro SJL, Gaspar AMM, Marchetto R (2018) Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration. Biomed Mater 13:035009PubMedCrossRefGoogle Scholar
  388. Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R (2015a) pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int J Biol Macromol 76:209–217PubMedCrossRefGoogle Scholar
  389. Shao W, Liu H, Liu X, Wang S, Wu J, Zhang R, Min H, Huang M (2015b) Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 132:351–358PubMedCrossRefGoogle Scholar
  390. Shao W, Liu H, Liu X, Wang S, Zhang R (2015c) Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv 5:4795–4803CrossRefGoogle Scholar
  391. Shao W, Liu H, Wang S, Wu J, Huang M, Min H, Liu X (2016) Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 145:114–120PubMedCrossRefGoogle Scholar
  392. Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2012a) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644–6649PubMedCrossRefGoogle Scholar
  393. Shi Q, Zhou C, Yue Y, Guo W, Wu Y, Wu Q (2012b) Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydr Polym 90:301–308PubMedCrossRefGoogle Scholar
  394. Shi X, Zheng Y, Wang G, Lin Q, Fan J (2014) pH- and electro-response characteristics of bacterial cellulose nanofibersodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv 4:47056–47065CrossRefGoogle Scholar
  395. Shpigel E, Roiz L, Goren R, Shoseyov O (1998) Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells. Plant Physiol 117:1185–1194PubMedPubMedCentralCrossRefGoogle Scholar
  396. Siangsanoh C, Ummartyotin S, Sathirakul K, Rojanapanthu P, Treesuppharat W (2018) Fabrication and characterization of triple-responsive composite hydrogel for targeted and controlled drug delivery system. J Mol Liq 256:90–99CrossRefGoogle Scholar
  397. Silva NHCS, Drumond I ˆs, Almeida IF, Costa P, Rosado CF, Neto CP, Freire CSR, Silvestre AJD (2014a) Topical caffeine delivery using biocellulose membranes: a potential innovative system for cellulite treatment. Cellulose 21:665–674CrossRefGoogle Scholar
  398. Silva NHCS, Filipe Rodrigues A, Almeida IF, Costa PC, Rosado C, Pascoal Neto C, Silvestre AJD, Freire CSR (2014b) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269PubMedCrossRefGoogle Scholar
  399. Silva RM, Pereira FV, Mota FAP, Watanabe E, Soares SMCS, Santos MH (2016) Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals. Mater Sci Eng C 58:389–395CrossRefGoogle Scholar
  400. Silveira FCA, Pinto FCM, Caldas Neto S da S, Leal M de C, Cesário J, Aguiar JL de A (2016) Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial. Braz J Otorhinolaryngol 82:203–208PubMedCrossRefGoogle Scholar
  401. Sinclair A, Jiang L, Bajwa D, Bajwa S, Tangpong S, Wang X (2018) Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites. J Appl Polym Sci 135:9–11CrossRefGoogle Scholar
  402. Singla R, Soni S, Markand Kulurkar P, Kumari A, Mahesh S, Patial V, Padwad YS, Kumar Yadav S (2017a) In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym 155:152–162PubMedCrossRefGoogle Scholar
  403. Singla R, Soni S, Padwad YS, Acharya A, Yadav SK (2017b) Sustained delivery of BSA/HSA from biocompatible plant cellulose nanocrystals for in vitro cholesterol release from endothelial cells. Int J Biol Macromol 104:748–757PubMedCrossRefGoogle Scholar
  404. Singla R, Soni S, Patial V, Markand Kulurkar P, Kumari A, Mahesh S, Padwad YS, Kumar Yadav S (2017c) In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int J Biol Macromol 105:45–55PubMedCrossRefGoogle Scholar
  405. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432PubMedCrossRefGoogle Scholar
  406. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411PubMedCrossRefGoogle Scholar
  407. Siqueira G, Kokkinis D, Libanori R, Hausmann MK, Gladman AS, Neels A, Tingaut P, Zimmermann T, Lewis JA, Studart AR (2017) Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv Funct Mater 27(12):1604619CrossRefGoogle Scholar
  408. Song K, Xu H, Xie K, Yang Y (2017) Keratin-based biocomposites reinforced and cross-linked with dual-functional cellulose nanocrystals. ACS Sustain Chem Eng 5:5669–5678CrossRefGoogle Scholar
  409. Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste UH, Bruck HA, Zhu JY, Vellore A, Li H, Minus ML, Jia Z, Martini A, Li T, Hu L (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228PubMedCrossRefGoogle Scholar
  410. Souza CMCO, Mesquita LAF, Souza D, Irioda AC, Francisco JC, Souza CF, Guarita-Souza LC, Sierakowski M, Carvalho KAT (2014) Regeneration of skin tissue promoted by mesenchymal stem cells seeded in nanostructured membrane. Transplant Proc 46:1882–1886PubMedCrossRefGoogle Scholar
  411. Stevens MM (2005) Exploring and engineering the cell surface interface. Science (80- ) 310:1135–1138CrossRefGoogle Scholar
  412. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res Part B Appl Biomater 85B:573–582CrossRefGoogle Scholar
  413. Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E (2007) Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instruments Methods Phys Res Sect B Beam Interact With Mater Atoms 265:434–438CrossRefGoogle Scholar
  414. Stumpf TR, Pértile RAN, Rambo CR, Porto LM (2013) Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Mater Sci Eng C 33:4739–4745CrossRefGoogle Scholar
  415. Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061PubMedCrossRefGoogle Scholar
  416. Sukul M, Min Y, Lee S, Lee B (2015) Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose- b tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. Eur Polym J 73:308–323CrossRefGoogle Scholar
  417. Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications: a review. Biotechnol Adv 33:1547–1571PubMedCrossRefGoogle Scholar
  418. Sultan S, Mathew A (2018) 3D printed scaffolds with gradient porosity based on cellulose nanocrystal hydrogel. Nanoscale 4421–4431PubMedCrossRefGoogle Scholar
  419. Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146CrossRefGoogle Scholar
  420. Sun F, Nordli HR, Pukstad B, Gamstedt EK, Chinga-carrasco G (2017) Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J Mech Behav Biomed Mater 69:377–384PubMedCrossRefGoogle Scholar
  421. Sunasee R, Hemraz U (2018) Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers 6:15CrossRefGoogle Scholar
  422. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431PubMedCrossRefGoogle Scholar
  423. Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat Mater 15:413–418PubMedCrossRefGoogle Scholar
  424. Tabaii MJ, Emtiazi G (2018) Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. J Drug Deliv Sci Technol 44:244–253CrossRefGoogle Scholar
  425. Taheri A, Mohammadi M (2015) The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chem Biol Drug Des 86:102–106PubMedCrossRefGoogle Scholar
  426. Tang J, Bao L, Li X, Chen L, Hong FF (2015a) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3:8537–8547CrossRefGoogle Scholar
  427. Tang J, Song Y, Tanvir S, Anderson WA, Berry RM, Tam KC (2015b) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3:1801–1809CrossRefGoogle Scholar
  428. Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015c) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366PubMedCrossRefGoogle Scholar
  429. Tanpichai S, Oksman K (2018) Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: mechanical and thermal properties. J Appl Polym Sci 135:1–11CrossRefGoogle Scholar
  430. Taokaew S, Phisalaphong M, Newby BZ (2015) Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22:2311–2324PubMedPubMedCentralCrossRefGoogle Scholar
  431. Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61PubMedPubMedCentralCrossRefGoogle Scholar
  432. Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer (Guildf) 51:2652–2660CrossRefGoogle Scholar
  433. Tong WY, bin Abdullah AYK, binti Rozman NAS, bin Wahid MIA, Hossain MS, Ring LC, Lazim Y, Tan W-N (2018) Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose 25:631–638CrossRefGoogle Scholar
  434. Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep 15:84–91CrossRefGoogle Scholar
  435. Trovatti E, Silva NHCS, Duarte IF, Rosado CF, Almeida IF, Costa P, Freire CSR, Silvestre AJD, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12:4162–4168PubMedCrossRefGoogle Scholar
  436. Trovatti E, Freire CSR, Pinto PC, Almeida IF, Costa P, Silvestre AJD, Pascoal Neto C, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87PubMedCrossRefGoogle Scholar
  437. Tsai Y, Yang Y, Ho Y, Tsai M, Mi F-L (2018) Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohydr Polym 180:286–296PubMedCrossRefGoogle Scholar
  438. Tummala GK, Joffre T, Lopes VR, Liszka A, Buznyk O, Ferraz N, Persson C, Griffith M, Mihranyan A (2016) Hyperelastic nanocellulose-reinforced hydrogel of high water content for ophthalmic applications. ACS Biomater Sci Eng 2:2072–2079CrossRefGoogle Scholar
  439. Turbak A, Snyder F, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Appl Polym 37:815–827Google Scholar
  440. Türkoglu N (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27CrossRefGoogle Scholar
  441. Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28:1736–1743CrossRefGoogle Scholar
  442. Ul-islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596CrossRefGoogle Scholar
  443. Ullah H, Badshah M, Makila E, Salonen J, Shahbazi M, Santos HA, Khan T (2017) Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose 24:1445–1454CrossRefGoogle Scholar
  444. UPM Biochemicals (2018) Growdex the natural choice for cell culture. http://www.upmbiochemicals.com/growdex/Pages/Default.aspx
  445. Valo H, Kovalainen M, Laaksonen P, Häkkinen M, Auriola S, Peltonen L, Linder M, Järvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices – enhanced stability and release. J Control Release 156:390–397PubMedCrossRefGoogle Scholar
  446. Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77PubMedCrossRefGoogle Scholar
  447. Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42:406–415PubMedCrossRefGoogle Scholar
  448. Villares A, Moreau C, Dammak A, Capron I, Cathala B (2015) Kinetic aspects of the adsorption of xyloglucan onto cellulose nanocrystals. Soft Matter 11:6472–6481PubMedCrossRefGoogle Scholar
  449. Voicu G, Jinga S, Drosu B, Busuioc C (2017) Improvement of silicate cement properties with bacterial cellulose powder addition for applications in dentistry. Carbohydr Polym 174:160–170PubMedCrossRefGoogle Scholar
  450. Vollick B, Kuo P-Y, Alizadehgiashi M, Yan N, Kumacheva E (2017) From structure to properties of composite films derived from cellulose nanocrystals. ACS Omega 2:5928–5934CrossRefGoogle Scholar
  451. Volova TG, Shumilova AA, Shidlovskiy IP, Nikolaeva ED, Sukovatiy AG, Vasiliev AD, Shishatskaya EI (2018) Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Test 65:54–68CrossRefGoogle Scholar
  452. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795PubMedCrossRefGoogle Scholar
  453. Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832CrossRefGoogle Scholar
  454. Wan Y, Gao C, Han M, Liang H, Ren K, Wang Y, Luo H (2011) Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polym Adv Technol 22:2643–2648CrossRefGoogle Scholar
  455. Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946CrossRefGoogle Scholar
  456. Wang Y, Chen L (2014) Cellulose nanowhiskers and fiber alignment greatly improve mechanical properties of electrospun prolamin protein fibers. ACS Appl Mater Interfaces 6:1709–1718PubMedCrossRefGoogle Scholar
  457. Wang H, Liu Y, Li M, Huang H, Xu HM, Hong RJ, Shen H (2010a) Multifunctional TiO2nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4:1166–1169Google Scholar
  458. Wang J, Gao C, Zhang Y, Wan Y (2010b) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRefGoogle Scholar
  459. Wang Y, Chang C, Zhang L (2010c) Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/PVA sponges. Macromol Mater Eng 295:137–145CrossRefGoogle Scholar
  460. Wang J, Wan YZ, Luo HL, Gao C, Huang Y (2012) Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater Sci Eng C 32:536–541CrossRefGoogle Scholar
  461. Wang Q, Zhu JY, Considine JM (2013) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5:2527–2534PubMedCrossRefGoogle Scholar
  462. Wang C, Huang H, Jia M, Jin S, Zhao W, Cha R (2015a) Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydr Polym 130:275–279PubMedCrossRefGoogle Scholar
  463. Wang H, He J, Zhang M, Tam KC, Ni P (2015b) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209CrossRefGoogle Scholar
  464. Wang B, Lv X, Chen S, Li Z, Yao J, Peng X, Feng C, Xu Y, Wang H (2017) Bacterial cellulose/gelatin scaffold loaded with VEGF-silk fibroin nanoparticles for improving angiogenesis in tissue regeneration. Cellulose 24:5013–5024CrossRefGoogle Scholar
  465. Wang J, Chiappone A, Roppolo I, Shao F, Fantino E, Lorusso M, Rentsch D, Dietliker K, Pirri CF, Grützmacher H (2018a) All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angew Chem Int Ed 57:2353–2356CrossRefGoogle Scholar
  466. Wang X, Xie Y, Ge H, Chen L, Wang J, Zhang S, Guo Y, Li Z, Feng X (2018b) Physical properties and antioxidant capacity of chitosan/epigallocatechin-3- gallate films reinforced with nano-bacterial cellulose. Carbohydr Polym 179:207–220PubMedCrossRefGoogle Scholar
  467. Wanna D, Alam C, Toivola DM, Alam P (2013) Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials. Adv Nat Sci Nanosci Nanotechnol 4:045002CrossRefGoogle Scholar
  468. Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture – a new bacterial cellulose substrate. Cytotechnology 13:107–114PubMedCrossRefGoogle Scholar
  469. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538CrossRefGoogle Scholar
  470. Wiegand C, Elsner P, Hipler UC, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 13:689–696CrossRefGoogle Scholar
  471. Wiegand C, Moritz S, Hessler N, Kralisch D, Wesarg F, Müller FA, Fischer D, Hipler U (2015) Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J Mater Sci Mater Med 26:245PubMedCrossRefGoogle Scholar
  472. Wijaya CJ, Saputra SN, Soetaredjo FE, Putro JN, Lin CX, Kurniawan A, Ju Y, Ismadji S (2017) Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr Polym 175:370–376PubMedCrossRefGoogle Scholar
  473. Wu L, Zhou H, Sun H-J, Zhao Y, Yang X, Cheng SZD, Yang G (2013) Thermoresponsive bacterial cellulose whisker/poly(NIPAM- co -BMA) nanogel complexes: synthesis, characterization, and biological evaluation. Biomacromolecules 14:1078–1084PubMedCrossRefGoogle Scholar
  474. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014a) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771PubMedCrossRefGoogle Scholar
  475. Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z (2014b) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9:1–12CrossRefGoogle Scholar
  476. Wu J, Zheng Y, Yang Z, Lin Q, Qiao K, Chen X, Peng Y (2014c) Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. RSC Adv 4:3998–4009CrossRefGoogle Scholar
  477. Wu CN, Fuh SC, Lin SP, Lin YY, Chen HY, Liu JM, Cheng KC (2018) TEMPO-Oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules 19:544–554PubMedCrossRefGoogle Scholar
  478. Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127:79–86CrossRefGoogle Scholar
  479. Xiong G, Luo H, Zhu Y, Raman S, Wan Y (2014) Creation of macropores in three-dimensional bacterial cellulose scaffold for potential cancer cell culture. Carbohydr Polym 114:553–557PubMedCrossRefGoogle Scholar
  480. Xu J, Liu S, Chen G, Chen T, Song T, Wu J, Shi C, He M, Tian J (2018) Engineering biocompatible hydrogels from bicomponent natural nanofibers for anticancer drug delivery. Agric Food Chem 66:935–942CrossRefGoogle Scholar
  481. Yadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL (2010) Novel in vivo -degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol 76:6257–6265PubMedPubMedCentralCrossRefGoogle Scholar
  482. Yadav V, Sun L, Panilaitis B, Kaplan DL (2015) In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. J Tissue Eng Regen Med 9:E276–E288PubMedCrossRefGoogle Scholar
  483. Yan H, Chen X, Feng M, Shi Z, Zhang D, Lin Q (2017) Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering. Mater Lett 209:492–496CrossRefGoogle Scholar
  484. Yan H, Huang D, Chen X, Liu H, Feng Y, Zhao Z, Dai Z, Zhang X, Lin Q (2018) A novel and homogeneous scaffold material: preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering. Polym Bull 75:985–1000CrossRefGoogle Scholar
  485. Yang X, Berglund LA (2018) Water-based approach to high-strength all-cellulose material with optical transparency. ACS Sustain Chem Eng 6:501–510CrossRefGoogle Scholar
  486. Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem 22:22467–22480CrossRefGoogle Scholar
  487. Yang J, Han CR, Duan JF, Xu F, Sun RC (2013a) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207PubMedCrossRefGoogle Scholar
  488. Yang X, Bakaic E, Hoare T, Cranston ED (2013b) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14:4447–4455PubMedCrossRefGoogle Scholar
  489. Yang J, Lv X, Chen S, Li Z, Feng C, Wang H, Xu Y (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823–1835CrossRefGoogle Scholar
  490. Yang J, Wang L, Zhang W, Sun Z, Li Y, Yang M, Zeng D, Peng B, Zheng W, Jiang X, Yang G (2018) Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation. Small 14:1702582CrossRefGoogle Scholar
  491. Yano H (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Sustain Humanosph 1:11Google Scholar
  492. Ye J, Si J, Cui Z, Wang Q, Peng K, Chen W, Peng X, Chen SC (2017) Surface modification of electrospun TPU nanofiber scaffold with CNF particles by ultrasound-assisted technique for tissue engineering. Macromol Mater Eng 302:1700277CrossRefGoogle Scholar
  493. Ye S, Jiang L, Wu J, Su C, Huang C, Liu X, Shao W (2018) Flexible amoxicillin grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 10:5862–5870PubMedCrossRefGoogle Scholar
  494. Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212PubMedCrossRefGoogle Scholar
  495. Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S, Sekine J (2013) Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9:6116–6122PubMedCrossRefGoogle Scholar
  496. You J, Cao J, Zhao Y, Zhang L, Zhou J, Chen Y (2016) Improved mechanical properties and sustained release behavior of cationic cellulose nanocrystals reinforeced cationic cellulose injectable hydrogels. Biomacromolecules 17:2839–2848PubMedCrossRefGoogle Scholar
  497. Young R, Rowell R (1986) Cellulose: structure, modification, and hydrolysis. Wiley, New YorkGoogle Scholar
  498. Yu HY, Chen GY, Wang YB, Yao JM (2015) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22:261–273CrossRefGoogle Scholar
  499. Yu H, Wang C, Abdalkarim SYH (2017) Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly (lactic acid ) nanofibers for controlling long-term in vitro drug release. Cellulose 24:4461–4477CrossRefGoogle Scholar
  500. Yuan Lu ASO, Levent Tekinalp H, Eberle CC, Peter W, Kumar Naskar A (2003) Nanocellulose in polymer composites and biomedical applications. TAPPI J 13:10–12Google Scholar
  501. Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547PubMedCrossRefGoogle Scholar
  502. Zang S, Zhuo Q, Chang X, Qiu G, Wu Z, Yang G (2014) Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose. Carbohydr Polym 104:158–165PubMedCrossRefGoogle Scholar
  503. Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Qiu G, Wu Z, Yang G (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C 46:111–117CrossRefGoogle Scholar
  504. Zhang X, Huang J, Chang PR, Li J, Chen Y, Wang D, Yu J, Chen J (2010) Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on Cyclodextrin inclusion. Polymer (Guildf) 51:4398–4407CrossRefGoogle Scholar
  505. Zhang J, Chang P, Zhang C, Xiong G, Luo H, Zhu Y, Ren K, Yao F, Wan Y (2015) Immobilization of lecithin on bacterial cellulose nanofibers for improved biological functions. React Funct Polym 91–92:100–107CrossRefGoogle Scholar
  506. Zhang F, Wu W, Zhang X, Meng X, Tong G, Deng Y (2016) Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23:415–425CrossRefGoogle Scholar
  507. Zhang H, Wang J, Wang K, Xu L (2018) A bilayered PLGA/multiwall carbon nanotubes/bacterial cellulose composite membrane for tissue regeneration of maxillary canine periodontal bone defects. Mater Lett 212:118–121CrossRefGoogle Scholar
  508. Zhao J, Hu L, Gong N, Tang Q, Du L, Chen L (2015a) The effects of macrophage-stimulating protein on the migration, proliferation, and collagen synthesis of skin fibroblasts in vitro and in vivo. Tissue Eng Part A 21:982–991PubMedCrossRefGoogle Scholar
  509. Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015b) Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl Mater Interfaces 7:2607–2615PubMedCrossRefGoogle Scholar
  510. Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: chatacterization and first evaluation of cytocomptability. J Appl Polym Sci 120:2938–2944CrossRefGoogle Scholar
  511. Zhijiang C, Chengwei H, Guang Y (2012) Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr Polym 87:1073–1080CrossRefGoogle Scholar
  512. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625PubMedCrossRefGoogle Scholar
  513. Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan TM, Sojoudi H, Barlow S, Graham S, Brédas JL, Marder SR, Kahn A, Kippelen B (2012) A universal method to produce low-work function electrodes for organic electronics. Science 336:327–332PubMedCrossRefGoogle Scholar
  514. Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013a) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854PubMedCrossRefGoogle Scholar
  515. Zhou Y, Fuentes-Hernandez C, Khan TM, Liu JC, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013b) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:24–26Google Scholar
  516. Zhou L, He H, Li MC, Huang S, Mei C, Wu Q (2018) Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: enhancing thermal stability and hydrophobic property. Carbohydr Polym 189:331–341PubMedCrossRefGoogle Scholar
  517. Zhu C, Li F, Zhou X, Lin L, Zhang T (2014) Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res Part A 102A:1548–1557CrossRefGoogle Scholar
  518. Zhu C, Liu F, Qian W, Wang Y, You Q, Zhang T, Li F (2015) Esophageal replacement by hydroxylated bacterial cellulose patch in a rabbit model. Turk J Med Sci 45:762–770PubMedCrossRefGoogle Scholar
  519. Zhu Q, Teng J, Liu X, Lan Y, Guo R (2018) Preparation and characterization of gentamycin sulfate-impregnated gelatin microspheres/collagen–cellulose/nanocrystal scaffolds. Polym Bull 75:77–91CrossRefGoogle Scholar
  520. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar
  521. Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1:1996–2004PubMedCrossRefGoogle Scholar
  522. Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(n-isopropylacrylamide)- cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers (Basel) 9:119PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Plant Science and Genetics, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
  2. 2.PSW Ltd.RehovotIsrael

Personalised recommendations