Skip to main content
Log in

Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial nanocellulose (BC) is characterized by an exciting interconnection of the important and well-known cellulose properties with the outstanding features of nano-scale materials. As a remarkable benefit of BC the property-controlling fiber network and pore system formed by self-assembly of the cellulose molecules can be modified in situ using additives during biosynthesis. The addition of polyethylene glycol (PEG) 4000 causes a pore size decrease. In presence of β-cyclodextrin or PEG 400 remarkably increased pores can be achieved. Surprisingly, these co-substrates act as removable auxiliaries not incorporated in the BC samples. In contrast, carboxymethyl cellulose and methyl cellulose as additives lead to structural modified composite materials. Using cationic starch (2-hydroxy-3-trimethylammoniumpropyl starch chloride, TMAP starch) double-network BC composites by incorporation of the starch derivative in the BC prepolymer were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BC:

Bacterial nanocellulose

CMC:

Carboxymethyl cellulose

DP:

Degree of polymerization

DS:

Degree of substitution

DSC:

Differential scanning calorimetry

DSMZ:

Deutsche Sammlung von Mikroorganismen und Zellkulturen

GlcNAc:

N-Acetyl glucosamine

GPC:

Gel permeation chromatography

HS:

Hestrin-Schramm

MC:

Methyl cellulose

MN :

Number molecular weight

MW :

Weight molecular weight

PDI:

Polydispersity

PEG/PEO:

Polyethylene glycol

SEM:

Scanning electron microscopy

TMAP starch:

2-hydroxy-3-trimethylammoniumpropyl starch chloride

UDP glucose:

uridine diphosphate glucose

WHC:

Water holding capacitiy

References

  • Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Structure of Acetobacter cellulose composites in the hydrated state. Int J Biol Macromol 29:193–202. doi:10.1016/S0141-8130(01)00167-2

    Article  CAS  Google Scholar 

  • Brown EE, Laborie M-PG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8:3074–3081. doi:10.1021/bm700448x

    Article  CAS  Google Scholar 

  • Brown EE, Laborie M-PG (2008) Additions & corrections: bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 9:3427–3428. doi:10.1021/bm8012023

    Article  CAS  Google Scholar 

  • Delmer DP, Benzimann M, Klein AS, Bacic A, Mitchell B, Weinhouse H, Aloni Y, Callaghan T (1983) A comparison of the mechanism of cellulose biosynthesis in plants and bacteria. J Appl Polym Sci Symp 37:1–16

    CAS  Google Scholar 

  • Haak V, Heinze T, Oelmeyer G, Kulicke W-M (2002) Starch derivatives of high degree of functionalization, synthesis and flocculation behavior of cationic starch polyelectrolytes. Macromol Mater Eng 287:495–502. doi:10.1002/1439-2054(20020801)287:8<495::AID-MAME495>3.0.CO;2-K

    Article  Google Scholar 

  • Haigler CH, White AR, Brown AR Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94:64. doi:10.1083/jcb.94.1.64

    Article  CAS  Google Scholar 

  • Heßler N (2004) Synthese von requellbarer sowie kurzkettiger Bakteriencellulose. Diploma thesis, Friedrich-Schiller-Universität, Jena

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum II. Preparation of freeze-dried cells capable of polimerizing glucose to cellulose. Biochem J 58:345–352

    CAS  Google Scholar 

  • Hibino Y, Sato T, Kaji H, Ougiya H, Watanabe K, Hioki S (1998) Manufacture of bacterial cellulose-containing paper with high filler retention. JP Patent 10273891

  • Jayme G, Rothamel L (1948) Development of a standard centrifugal method for determining the swelling values of pulps. Papier Bingen Ger 2:7–18

    CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose–artifical blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. doi:10.1016/S0079-6700(01)00021-1

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96. doi:10.1007/12_097

    Article  CAS  Google Scholar 

  • Okazaki N (1999) Low-density paper containing bacteria cellulose and expandable particles with high tensile strength and manufacture thereof. JP Patent 11200282

  • Sakairi N, Suzuki S, Ueno K, Han S-M, Nishi N, Tokura S (1998) Biosynthesis of heteropolysaccharides by Acetobacter xylinum—synthesis and characterization of metal-ion adsorptive properties of partially carboxymethylated cellulose. Carbohydr Polym 37:409–414. doi:10.1016/S0144-8617(97)00226-9

    Article  CAS  Google Scholar 

  • Schumann D, Klemm DO, Kramer F, Wesarg F, Koth D, Fried W (2008) Artificial vascular implants from bacterial synthesized cellulose. Abstracts of Papers, 235th ACS national meeting, New Orleans, LA, United States

  • Seifert M, Hesse S, Kabrelian V, Klemm D (2004) Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Polym Sci 42(A1):463–470

    CAS  Google Scholar 

  • Smith BA, Colegrove GT, Rakitsky WG (1999) Acid-stable and cationic-compatible cellulose compositions and their manufacture. WO Patent 9940153

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155. doi:10.1002/adma.200400597

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Among many colleagues from the Institute of Organic and Macromolecular Chemistry as well as the lab, authors are especially grateful to Dr. Tim Liebert for the production of TMAP starch. We thank Dr. Völksch for SEM investigations and Mrs. Weiß for DSC measurements. Special thanks go to Prof. Antje Potthast (Department of Chemistry, University of natural resources and applied life sciences, Vienna)for the GPC investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Heßler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heßler, N., Klemm, D. Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 16, 899–910 (2009). https://doi.org/10.1007/s10570-009-9301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9301-5

Keywords

Navigation