Skip to main content
Log in

Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) were prepared by acidic hydrolysis of cotton fibers (Whatman #1 filter paper). In our efforts to select conditions in which the hydrolysis media does not install labile protons on the cellulose crystals, a mineral acid other than sulfuric acid (H2SO4) was used. Furthermore, in our attempts to increase the yields of nanocrystals ultrasonic energy was applied during the hydrolysis reaction. The primary objective was to develop hydrolysis reaction conditions for the optimum and reproducible CNC production. As such, the use of hydrobromic acid (HBr) with the application of sonication as a function of concentration (1.5–4.0 M), temperature (80–100 °C), and time (1–4 h) was examined. Applying sonic energy during the reaction was found to have significant positive effects as far as reproducible high yields are concerned. Overall, the combination of 2.5 M HBr, 100 °C, and 3 h associated with the sonication during the reaction generated the highest nanocrystal yields. In addition to the optimization study three types of surface modifications including TEMPO-mediated oxidation, alkynation, and azidation were used to prepare surface-activated, reactive CNCs. Subsequently, click chemistry was employed for bringing together the modified nanocrystalline materials in a unique regularly packed arrangement demonstrating a degree of molecular control for creating these structures at the nano level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Battista OA (1950) Ind Eng Chem 42:502

    Article  CAS  Google Scholar 

  2. Dong X, Revol J, Gray D (1998) Cellulose 5:19

    Article  CAS  Google Scholar 

  3. Beck-Candanedo S, Roman M, Gray D, Gray G (2005) Biomacromolecules 6:1048

    Article  CAS  Google Scholar 

  4. Heinze T, Liebert T (2001) Prog Polym Sci 26:1689

    Article  CAS  Google Scholar 

  5. Klemm DK, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358

    Article  CAS  Google Scholar 

  6. Meldal M, Tornøe CW (2008) Chem Rev 108:2952

    Article  CAS  Google Scholar 

  7. Helms B, Mynar JL, Hawker CJ, Fréchet JMJ (2004) J Am Chem Soc 126:15020

    Article  CAS  Google Scholar 

  8. Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ (2009) Chem Rev 109:5620

    Article  CAS  Google Scholar 

  9. Liu J, Lam JWY, Tang BZ (2009) Chem Rev 109:5799

    Article  CAS  Google Scholar 

  10. Binder WH, Sachsenhofer R (2007) Macromol Rapid Commun 28:15

    Article  CAS  Google Scholar 

  11. Araki J, Wada M, Kuga S, Okano T (1999) J Wood Sci 45:258

    Article  CAS  Google Scholar 

  12. Araki J, Wada M, Kuga S (2001) Langmuir 17:21

    Article  CAS  Google Scholar 

  13. Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A: Physicochem Eng Aspects 142:75

    Article  CAS  Google Scholar 

  14. Sipahi-Sağlam E, Gelbrich M, Gruber E (2003) Cellulose 10:237

    Article  Google Scholar 

  15. Da Silva Perez D, Montanari S, Vignon MR (2003) Biomacromolecules 4:1417

    Article  CAS  Google Scholar 

  16. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Biomacromolecules 10:1992

    Article  CAS  Google Scholar 

  17. Filpponen I, Argyropoulos DS (2010) Biomacromolecules 11:1060

    Article  CAS  Google Scholar 

  18. Liebert T, Hänsch C, Heinze T (2006) Macromol Rapid Commun 27:208

    Article  CAS  Google Scholar 

  19. Zhang J, Xu X-D, Wu D-Q, Zhang X-Z, Zhuo. R-X (2009) Carbohydr Polym 77:583

    Article  CAS  Google Scholar 

  20. Heinze T, Liebert T (2001) Prog Polym Sci 26:1689

    Article  CAS  Google Scholar 

  21. Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS (2007) Biomacromolecules 8:3740

    Article  CAS  Google Scholar 

  22. Zoia L, King WT, Argyropoulos DS (2011) J Agric Food Chem 59:829 doi:10.102/JF103615e

    Article  CAS  Google Scholar 

  23. Dong XM, Kimura T, Revol J, Gray DG (1996) Langmuir 12:2076

    Article  CAS  Google Scholar 

  24. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) Text Res J 29:786

    Article  CAS  Google Scholar 

  25. Ahtee M, Hattula T, Mangs J, Paakkari T (1999) Paperi Ja Puu 8:475

    Google Scholar 

  26. Sugiyama J, Vuong R, Chanzy H (1991) Macromolecules 24:4168

    Article  CAS  Google Scholar 

  27. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9:57

    Article  CAS  Google Scholar 

  28. Okita Y, Saito T, Akira Isogai (2010) Biomacromolecules 11:1696

    Article  CAS  Google Scholar 

  29. Nishiyama Y, Chanzy H, Langan P (2002) J Am Chem Soc 124:9074

    Article  CAS  Google Scholar 

  30. Tahiri C, Vignon M (2000) Cellulose 7:177

    Article  CAS  Google Scholar 

  31. Fan LT, Gharpuray MM, Lee Y-H (1987) Biotechnology Monographs. Springer-Verlag, Berlin, p 76

  32. Araki J, Wada M, Kuga S, Okano T (2000) Langmuir 16:2413

    Article  CAS  Google Scholar 

  33. Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Macromolecules 31:5717

    Article  CAS  Google Scholar 

  34. Shibata I, Isogai A (2003) Cellulose 10:151

    Article  CAS  Google Scholar 

  35. Ibert M, Marsais F, Merbouh N (2002) Carbohydr Res 337:1059

    Article  CAS  Google Scholar 

  36. Kato Y, Matsuo R, Isogai A (2003) Carbohydr Polym 51:69

    Article  CAS  Google Scholar 

  37. Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromoleules 6:1048

    Article  CAS  Google Scholar 

  38. Wang N, Ding E, Cheng R (2008) Langmuir 24:5

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the College of Natural Resources at NCSU for the award of the Hofmann Fellowship to one of us (IF) that made graduate studies possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris S. Argyropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghifar, H., Filpponen, I., Clarke, S.P. et al. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46, 7344–7355 (2011). https://doi.org/10.1007/s10853-011-5696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5696-0

Keywords

Navigation