Skip to main content

Advertisement

Log in

An estimation of the Young’s modulus of bacterial cellulose filaments

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

An estimation, using a Raman spectroscopic technique, of the Young’s modulus of a single filament of bacterial cellulose is presented. This technique is used to determine the local molecular deformation of the bacterial cellulose via a shift in the central position of the 1095 cm–1 Raman band, which corresponds to the stretching of the glycosidic bond in the backbone of the cellulose structure. By calculating the shift rate with respect to the applied strain it is shown that the stiffness of a single fibril of bacterial cellulose can be estimated. In order to perform this estimation, networks of fibres are rotated through 360° and the intensity of the 1095 cm−1 Raman band is recorded. It is shown that the intensity of this band is largely independent of the angle of rotation, which suggests that the networks are randomly distributed. The modulus is predicted from a calibration of Raman band shift against modulus, using previously published data, and by using Krenchel analysis to back-calculate the modulus of a single fibril. The value obtained (114 GPa) is higher than previously reported values for this parameter, but lower than estimates of the crystal modulus of cellulose-I (130–145 GPa). Reasons for these discrepancies are given in terms of the crystallinity and structural composition of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35

    Article  CAS  Google Scholar 

  • Batchelder DN, Bloor D (1979) Strain dependence of the vibrational-modes of a diacetylene crystal. J Polym Sci – Polym Phys Edn 17:569–581

    Article  CAS  Google Scholar 

  • Benziman M, Brown RM, Cooper K, Haigler C, White A (1980) Cellulose biogenesis – polymerization and crystallization are coupled processes in Acetobacter-xylinum. PNAS 77:6678–6682

    Article  CAS  Google Scholar 

  • Brown RM (1989) Bacterial cellulose. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose: structural and functional aspects, 1st edn. Ellis Horwood Ltd, Chichester

    Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  CAS  Google Scholar 

  • Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A 53:2383–2392

    Article  Google Scholar 

  • Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Sirichaisit J, Young RJ (2001) Deformation mechanisms in cellulose fibres, paper and wood. J Mater Sci 36:3129–3135

    Article  CAS  Google Scholar 

  • Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibres followed by Raman microscopy. Biomacromolecules 7:2077–2081

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64:2407–2413

    Article  CAS  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibres using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  Google Scholar 

  • Hamad WY, Eichhorn SJ (1997) Deformation micromechanics of regenerated cellulose fibres using Raman spectroscopy. ASME J Eng Mat Technol 119:309–313

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M. (1954) Synthesis of cellulose by Acetobacter-xylinum .2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352

    CAS  Google Scholar 

  • Krenchel H (1964) Fibre reinforcement. Akademisk Forlag, Copenhagen

    Google Scholar 

  • Larsson PT, Westermark U, Iversen T (1995) Determination of the cellulose I alpha allomorph content in a tunicate cellulose by CP/MAS C-13-NMR spectroscopy. Carbohydr Res 278:339–343

    Article  CAS  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Mitra VK, Risen WM, Baughman RH (1977) Laser Raman study of stress dependence of vibrational frequencies of a monocrystalline polydiacetylene. J Chem Phys 66:2731–2736

    Article  CAS  Google Scholar 

  • Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical-properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechanical-properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25:2997–3001

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic-modulus of the crystalline regions of cellulose polymorphs. J Polym Sci B – Polym Phys 33:1647–1651

    Article  CAS  Google Scholar 

  • Peetla P, Schenzel KC, Diepenbrock W (2006) Determination of mechanical strength properties of hemp fibers using near-infrared Fourier transform Raman microspectroscopy. Appl Spectrosc 60:682–691

    Article  CAS  Google Scholar 

  • Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical-properties of cellulose. Macromol Theor Simul 4:725–743

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Tajima K, Fujiwara M, Takai M, Hayashi J (1995) Synthesis of bacterial cellulose composite by Acetobacter xylinum. I. Its mechanical strength and biodegradability. Mokuzai Gakkaishi 41:749–757

    CAS  Google Scholar 

  • van der Hart D, Atalla RH (1984) Native cellulose – a composite of 2 distinct crystalline forms. Science 223:283–285

    Article  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical-properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibres. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Young RJ, Eichhorn SJ (2007) Deformation mechanisms in polymer fibres and nanocomposites. Polymer 48:2–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, YC., Yano, H., Nogi, M. et al. An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15, 507–513 (2008). https://doi.org/10.1007/s10570-008-9206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9206-8

Keywords

Navigation