Skip to main content

Advertisement

Log in

Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Randomly oriented fiber mats of chitosan–polyethylene oxide matrix reinforced with cellulose nanocrystals (CNCs) were prepared by electrospinning technique. The cellulose nanocrystals used were isolated using hydrochloric acid (CNCHCl) or sulphuric acid (\({\text{CNC}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\)) and the concentration of CNCs was 50 wt% in the electrospun mats. The surface characteristics of the nanocrystals were found to affect the dispersion, viscosity, conductivity and zeta-potential of the respective spinning solutions and resulted in better spinnability, homogeneity as well as crosslinking of CNCHCl based nanocomposite fiber mats compared to \({\text{CNC}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\) ones. The microscopy studies showed that the diameter of the electrospun fibers decreased with the inclusion of both types of nanocrystals and that crosslinking decreased the porosity of the mats. The tensile strength and tensile modulus of the mats increased with the addition of nanocrystals and increased further for the CNCHCl based mats (58 MPa, 3.1 GPa) after crosslinking. The as-spun CNCHCl based mats had average pore diameters of 1.6 μm and porosity of 38 %. The water vapor permeability and the O2/CO2 transmission increased with the addition of CNCHCl. The used nanocrystals as well as electrospun mats showed non-cytotoxic impact on adipose derived stem cells (ASCs), which was considered favorable for wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans Ind Appl 47:1109–1117

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf Physicochem Eng Aspects 142:75–82

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf Physicochem Eng Aspects 313–314:183–188

    Article  Google Scholar 

  • Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2

  • Duan B, Dong C, Yuan X, Yao K (2004) Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). J Biomater Sci Polym Ed 15:797–811

    Article  CAS  Google Scholar 

  • Dugan JM, Collins RF, Gough JE, Eichhorn SJ (2013) Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomater 9:4707–4715

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Sampson WW (2005) Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2:309–318

    Article  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225

    Article  CAS  Google Scholar 

  • Gu S, Wang Z, Ren J, Zhang C (2009) Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing. Mater Sci Eng, C 29:1822–1828

    Article  CAS  Google Scholar 

  • Herrera NV, Mathew AP, Wang LY, Oksman K (2011) Randomly oriented and aligned cellulose fibres reinforced with cellulose nanowhiskers, prepared by electrospinning. Plast, Rubber Compos 40:57–64

    Article  CAS  Google Scholar 

  • Herrera MA, Mathew AP, Oksman K (2014) Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 112:494–501

    Article  CAS  Google Scholar 

  • Hooshmand S, Cho SW, Skrifvars M, Mathew A, Oksman K (2014) Melt spun cellulose nanocomposite fibres: comparison of two dispersion techniques. Plast, Rubber Compos 43:15–24

    Article  CAS  Google Scholar 

  • Hooshmand S, Aitomäki Y, Skrifvars M, Mathew AP, Oksman K (2014) All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals. Cellulose 21:2665–2678

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  • Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41:409–421

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150

    Article  CAS  Google Scholar 

  • Jia B, Li Y, Yang B, Xiao D, Zhang S, Rajulu AV, Kondo T, Zhang L, Zhou J (2013) Effect of microcrystal cellulose and cellulose whisker on biocompatibility of cellulose-based electrospun scaffolds. Cellulose 20:1911–1923

    Article  CAS  Google Scholar 

  • Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO 4-hydrolyzed cellulose nanocrystals. Langmuir 26:17919–17925

    Article  CAS  Google Scholar 

  • Joly C, Le Cerf D, Chappey C, Langevin D, Muller G (1999) Residual solvent effect on the permeation properties of fluorinated polyimide films. Sep Purif Technol 16:47–54

    Article  CAS  Google Scholar 

  • Kaessmann HJ, Hark KW (1997) Chitosan foil for wound sealing and process for its preparation. United States Patent US5597581

  • Khil M, Cha D, Kim H, Kim I, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B 67:675–679

    Article  Google Scholar 

  • Li Q, Dunn ET, Grandmaison EW, Goosen MFA (1992) Applications and properties of chitosan. J Bioact Compatible Polym 7:370–397

    Article  CAS  Google Scholar 

  • Li W, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  CAS  Google Scholar 

  • Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag +) from water via surface adsorption. Cellulose 21:449–461

    Article  CAS  Google Scholar 

  • Luque R, Varma RS, Clark JH, Kraus GA (2012) Sustainable preparation of metal nanoparticles: methods and applications. J R Soc Chem

  • Marchessault R, Morehead F, Koch MJ (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Karim Z, Liu P, Khan SA, Naseri N (2014) Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Ind Crop Prod 58:212–219

    Article  CAS  Google Scholar 

  • Mi F, Shyu S, Wu Y, Lee S, Shyong J, Huang R (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    Article  CAS  Google Scholar 

  • Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP (2014) Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15

    Article  CAS  Google Scholar 

  • Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg 35:146–152

    Article  CAS  Google Scholar 

  • Ramakrishna S, Fujihara K (2005) An Introduction To Electrospinning And Nanofibers. World Scientific Publishing, Singapore

    Book  Google Scholar 

  • Ranby BG (1952) The cellulose micelles. Tappi 35:53–58

    CAS  Google Scholar 

  • Rodríguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19:1583–1598

    Article  Google Scholar 

  • Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites—influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369

    Article  CAS  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    Article  CAS  Google Scholar 

  • Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15–30

    Article  CAS  Google Scholar 

  • Yu H, Qin Z, Liu L, Yang X, Zhou Y, Yao J (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Composites Sci Technol 87:22–28

    Article  CAS  Google Scholar 

  • Zahedi P, Rezaeian I, Ranaei-Siadat S-, Jafari S-, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21:77–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge VINNOVA for financial support under the MNT-ERANET project n-POSSCOG (2011-02071). Also, Yvonne Aitomäki, Sophie Cousin, Valencia Jacobs and Pengcheng Ye are acknowledged for assistance with testing porosity, conductivity, water vapor permeability and gas permeability, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aji P. Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, N., Mathew, A.P., Girandon, L. et al. Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22, 521–534 (2015). https://doi.org/10.1007/s10570-014-0493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0493-y

Keywords

Navigation