Advertisement

Proteomics Perspectives in Post-Genomic Era for Producing Salinity Stress-Tolerant Crops

  • Pannaga Krishnamurthy
  • Lin Qingsong
  • Prakash P. Kumar
Chapter

Abstract

Plant growth and productivity are affected by both biotic and abiotic stress factors. Among the abiotic stresses, salt stress is the most prevalent and deleterious environmental factor which limits crop yield globally. Combined with the increasing population and food demands, this poses a great challenge to humanity. Currently, salinity affects more than 20% of the irrigated land. This is estimated to increase drastically in the near future due to the excessive irrigation practices. These factors have necessitated the researchers to understand the salt tolerance mechanisms in plants in order to use various approaches to generate salt-tolerant crops. Due to their sessile nature, plants cannot evade the stressful environment, and therefore, some species have evolved various adaptive strategies to grow and reproduce under unfavorable environments. Salt stress imparts both osmotic and ionic stress to the plants, affecting their metabolism and ion homeostasis, thereby leading to reduced growth and productivity and death in some cases. Salt tolerance is a complex phenomenon involving changes in the biochemical, molecular, and physiological processes of the plant. These changes consisting of a readjustment in the genomic and proteomic complement of the plants are imperative in unraveling the tolerance mechanisms. Recent advances in the omics research have shed more light on a range of promising candidate genes and proteins that render salt tolerance to plants. In this chapter, we describe the general effects of salt stress, the tolerance mechanisms of plants, and how recent advances in the field of proteomics can be utilized to enhance salt tolerance of crop plants.

Keywords

Proteomics Salt stress Salt tolerance Crop plants 

Abbreviations

1DE

One-dimensional gel electrophoresis

2DE

Two-dimensional gel electrophoresis

ABA

Abscisic acid

APX

Ascorbate peroxidase

bHLH

Basic helix-loop-helix

CAT

Catalase

CCOMT

CoA O-methyltransferase

CNGCs

Cyclic nucleotide-gated channels

DHAR

Dehydroascorbate reductase

DIGE

Difference gel electrophoresis

EC

Electric conductivity

GPX

Glutathione peroxidase

HKT1

High-affinity potassium transporter

ICAT

Isotope-coded affinity tags

iTRAQ

Isobaric tags for relative and absolute quantitation

JA

Jasmonic acid

LRR

Leucine-rich repeat

MAPK

Mitogen-activated protein kinase

MDAR

Monodehydroascorbate reductase

MRM

Multiple reaction monitoring

MS

Mass spectrometry

MudPIT

Multidimensional protein identification technology

NaCl

Sodium chloride

NHX

Sodium/hydrogen exchanger

NSCC

Nonselective cation channels

PIP

Plasma membrane intrinsic proteins

POD

Peroxidases

PTMs

Posttranslational modifications

ROS

Reactive oxygen species

SA

Salicylic acid

SAM

S-adenosyl methionine

SILAC

Stable isotope labeling by amino acids in cell culture

SOD

Superoxide dismutase

SOS1

Salt overly sensitive1

SRM

Selective reaction monitoring

SUMO

Small ubiquitin-like modifiers

SWATH MS

Sequential window acquisition of all theoretical mass spectra

TIP

Tonoplast intrinsic proteins

VDAC

Voltage-dependent anion channel

VPPase

Vacuolar pyrophosphatase

Notes

Acknowledgments

The research work in our laboratory is supported by the Singapore National Research Foundation under its Environment and Water Research Programme and administered by PUB, Singapore’s National Water Agency, Singapore, NRF-EWI-IRIS (R-706-000-010-272 and R-706-000-040-279).

References

  1. Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4(7):2072–2081. https://doi.org/10.1002/pmic.200300741 CrossRefPubMedGoogle Scholar
  2. Acosta-Motos JR, Ortuno MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(18):1–38. https://doi.org/10.3390/agronomy7010018 CrossRefGoogle Scholar
  3. Aghaei K, Komatsu S (2013) Crop and medicinal plants proteomics in response to salt stress. Front Plant Sci 4:8. https://doi.org/10.3389/fpls.2013.00008 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258CrossRefGoogle Scholar
  5. Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6(8):2542–2554. https://doi.org/10.1002/pmic.200500328 CrossRefPubMedGoogle Scholar
  6. Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Loisel. Plant Biotechnol J 10(4):453–464. https://doi.org/10.1111/j.1467-7652.2012.00678.x CrossRefPubMedGoogle Scholar
  7. Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S (2011) Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 11(10):1965–1975. https://doi.org/10.1002/pmic.201000564 CrossRefPubMedGoogle Scholar
  8. Barkla BJ, Vera-Estrella R, Hernandez-Coronado M, Pantoja O (2009) Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. Plant Cell 21(12):4044–4058. https://doi.org/10.1105/tpc.109.069211 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bayat F, Shiran B, Belyaev DV (2011) Overexpression of HvNHX2, a vacuolar Na+/H+ antiporter gene from barley, improves salt tolerance in Arabidopsis thaliana. Aust J Crop Sci 5:428–432Google Scholar
  10. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111. https://doi.org/10.1105/tpc.7.7.1099 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139(2):790–805. https://doi.org/10.1104/pp.105.065029 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007) Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat ( Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28CrossRefGoogle Scholar
  13. Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Lagana A (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391(1):381–390. https://doi.org/10.1007/s00216-008-2008-x CrossRefPubMedGoogle Scholar
  14. Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72(10):1293–1307. https://doi.org/10.1016/j.phytochem.2011.01.024 CrossRefPubMedGoogle Scholar
  15. Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87(3):547–550CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot 60(7):2005–2019. https://doi.org/10.1093/jxb/erp075 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen F, Zhang S, Jiang H, Ma W, Korpelainen H, Li C (2011) Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings. J Proteome Res 10(9):3944–3958. https://doi.org/10.1021/pr200535r CrossRefPubMedGoogle Scholar
  18. Chen T, Zhang L, Shang H, Liu S, Peng J, Gong W, Shi Y, Zhang S, Li J, Gong J, Ge Q, Liu A, Ma H, Zhao X, Yuan Y (2016) iTRAQ-based quantitative proteomic analysis of cotton roots and leaves reveals pathways associated with salt stress. PLoS One 11(2):e0148487. https://doi.org/10.1371/journal.pone.0148487 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14(11):2723–2743CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9(11):3100–3114. https://doi.org/10.1002/pmic.200800340 CrossRefPubMedGoogle Scholar
  21. Cheng L, Li X, Huang X, Ma T, Liang Y, Ma X, Peng X, KJia J, Chen S, Chen Y, Deng B, Liu G (2013) Overexpression of sheep grass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem 70:252–260CrossRefPubMedGoogle Scholar
  22. Cheng T, Chen J, Zhang J, Shi S, Zhou Y, Lu L, Wang P, Jiang Z, Yang J, Zhang S, Shi J (2015) Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Front Plant Sci 6:30. https://doi.org/10.3389/fpls.2015.00030 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6(5):1718–1727. https://doi.org/10.1021/pr060678z CrossRefPubMedGoogle Scholar
  24. Cosentino C, Di Silvestre D, Fischer-Schliebs E, Homann U, De Palma A, Comunian C, Mauri PL, Thiel G (2013) Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM. Biochem J 450(2):407–415. https://doi.org/10.1042/BJ20121087 CrossRefPubMedGoogle Scholar
  25. Dani V, Simon WJ, Duranti M, Croy RR (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5(3):737–745. https://doi.org/10.1002/pmic.200401119 CrossRefPubMedGoogle Scholar
  26. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379. https://doi.org/10.1016/j.tplants.2014.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6(24):6498–6507. https://doi.org/10.1002/pmic.200600367 CrossRefPubMedGoogle Scholar
  28. Du CX, Fan HF, Guo SR, Tezuka T, Li J (2010) Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 71(13):1450–1459. https://doi.org/10.1016/j.phytochem.2010.05.020 CrossRefPubMedGoogle Scholar
  29. Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci 103(17):6518–6523. https://doi.org/10.1073/pnas.0506958103 CrossRefPubMedPubMedCentralGoogle Scholar
  30. El Rabey HA, Al-Malki AL, Abulnaja KO, Rohde W (2015) Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in date palm (Phoenix dactylifera L.). Int J Genomics 2015:407165. https://doi.org/10.1155/2015/407165 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Eldakak M, Milad SI, Nawar AI, Rohila JS (2013) Proteomics: a biotechnology tool for crop improvement. Front Plant Sci 4:35. https://doi.org/10.3389/fpls.2013.00035 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Enstone JE, Perterson CA, Ma FS (2003) Root endodermis and exodermis: structure, function and response to the environment. J Plant Growth Regul 21:335–351CrossRefGoogle Scholar
  33. Evers D, Legay S, Lamoureux D, Hausman JF, Hoffmann L, Renaut J (2012) Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol 78(4–5):503–514. https://doi.org/10.1007/s11103-012-9879-0 CrossRefPubMedGoogle Scholar
  34. Faiyue B, Al-Azzawi MJ, Flowers TJ (2010) The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant Cell Environ 33(5):702–716. https://doi.org/10.1111/j.1365-3040.2009.02078.x CrossRefPubMedGoogle Scholar
  35. Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39(5):6387–6397. https://doi.org/10.1007/s11033-012-1460-z CrossRefPubMedGoogle Scholar
  36. Flowers TJ (2004) Improving crop salt tolerance. J Exp Biol 55(396):307–319. https://doi.org/10.1093/jxb/erh003 CrossRefGoogle Scholar
  37. Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331CrossRefPubMedPubMedCentralGoogle Scholar
  38. Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Australian. J Plant Physiol 22:875–884Google Scholar
  39. Gan CS, Chong PK, Pham TK, Wright PC (2007) Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J Proteome Res 6(2):821–827. https://doi.org/10.1021/pr060474i CrossRefPubMedGoogle Scholar
  40. Gao L, Yan X, Li X, Guo G, Hu Y, Ma W, Yan Y (2011) Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry 72(10):1180–1191. https://doi.org/10.1016/j.phytochem.2010.12.008 CrossRefPubMedGoogle Scholar
  41. Gharat SA, Parmar S, Tambat S, Vasudevan M, Shaw BP (2016) Transcriptome analysis of the response to NaCl in Suaeda maritima provides an insight into salt tolerance mechanisms in halophytes. PLoS One 11(9):e0163485. https://doi.org/10.1371/journal.pone.0163485 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gorg A, Drews O, Luck C, Weiland F, Weiss W (2009) 2-DE with IPGs. Electrophoresis 30(Suppl 1):S122–S132. https://doi.org/10.1002/elps.200900051 CrossRefPubMedGoogle Scholar
  43. Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E (2015) Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Front Plant Sci 6:57. https://doi.org/10.3389/fpls.2015.00057 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596. https://doi.org/10.1155/2014/701596 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hakeem KR, Chandan R, Rehman RU, Tahir I, Sabir M, Iqbal M (eds) (2013) Salt stress in plants: signalling, omics and adaptations enhancing plant productivity under salt stress: relevance of poly-omics. Springer, New York. https://doi.org/10.1007/978-1-4614-6108-1_3 CrossRefGoogle Scholar
  47. Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, Ozturk M (eds) (2013) Salt stress in plants: signalling, omics and adaptations Enhancing plant productivity under salt stress: relevance of poly-omics. Springer, New York. https://doi.org/10.1007/978-1-4614-6108-1_6 CrossRefGoogle Scholar
  48. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463 CrossRefPubMedGoogle Scholar
  49. Hashiguchi A, Komatsu S (2016) Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes 4(4):42. https://doi.org/10.3390/proteomes4040042 CrossRefPubMedCentralGoogle Scholar
  50. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916. https://doi.org/10.1111/j.1365-313X.2005.02575.x CrossRefPubMedGoogle Scholar
  51. Hu J, Rampitsch C, Bykova NV (2015) Advances in plant proteomics toward improvement of crop productivity and stress resistancex. Front Plant Sci 6:209. https://doi.org/10.3389/fpls.2015.00209 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015a) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268. https://doi.org/10.1186/s12870-015-0644-9 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Huang Q, Yang L, Luo J, Guo L, Wang Z, Yang X, Jin W, Fang Y, Ye J, Shan B, Zhang Y (2015b) SWATH enables precise label-free quantification on proteome scale. Proteomics 15(7):1215–1223. https://doi.org/10.1002/pmic.201400270 CrossRefPubMedGoogle Scholar
  54. Jain S, Srivastava S, Sarin NB, Kav NN (2006) Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol Biochem 44(4):253–259. https://doi.org/10.1016/j.plaphy.2006.04.006 CrossRefPubMedGoogle Scholar
  55. Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Zhou X, Chen S, Li J (2016) Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci 7:573. https://doi.org/10.3389/fpls.2016.00573 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jia H, Shao M, He Y, Guan R, Chu P, Jiang H (2015) Proteome dynamics and physiological responses to short-term salt stress in Brassica napus leaves. PLoS One 10(12):e0144808. https://doi.org/10.1371/journal.pone.0144808 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jia YL, Chen H, Zhang C, Gao LJ, Wang XC, Qiu LL, Wu JF (2016) Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis. Genet Mol Biol 39(2):239–247. https://doi.org/10.1590/1678-4685-GMB-2015-0108 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25. https://doi.org/10.1186/1471-2229-6-25 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58(13):3591–3607. https://doi.org/10.1093/jxb/erm207 CrossRefPubMedGoogle Scholar
  60. Jiang Q, Li X, Niu F, Sun X, Hu Z, Zhang H (2017) iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics 17:1–13. https://doi.org/10.1002/pmic.201600265 CrossRefGoogle Scholar
  61. Jorrin-Novo JV, Maldonado AM, Echevarria-Zomeno S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteome 72(3):285–314CrossRefGoogle Scholar
  62. Jyothi-Prakash PA, Mohanty B, Wijaya E, Lim TM, Lin Q, Loh CS, Kumar PP (2014) Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC Plant Biol 14:291. https://doi.org/10.1186/s12870-014-0291-6 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim Ie S, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26(23):4521–4539. https://doi.org/10.1002/elps.200500334 CrossRefPubMedGoogle Scholar
  64. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218. https://doi.org/10.1111/j.1365-313X.2007.03044.x CrossRefPubMedGoogle Scholar
  65. Kim DY, Jin JY, Alejandro S, Martinoia E, Lee Y (2010) Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant 139(2):170–180. https://doi.org/10.1111/j.1399-3054.2010.01353.x CrossRefPubMedGoogle Scholar
  66. Kim K, Seo E, Chang SK, Park TJ, Lee SJ (2016) Novel water filtration of saline water in the outermost layer of mangrove roots. Sci Rep 6:20426. https://doi.org/10.1038/srep20426 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kosava K, Vitamvas P, Prasil IT, TRenaut J (2011) Plant proteome changes under abiotic stress- condition of proteomics studies to understanding plant stress response. J Proteome 74:1301–1322CrossRefGoogle Scholar
  68. Kosava K, Vitamvas P, Urban MO, Prail IT (2013) Plant proteome responses to salinity stress-comparison of glycophytes and halophytes. Funct Plant Biol 40:775–786Google Scholar
  69. Kosova K, Prail IT, Vitamvas P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14(4):6757–6789. https://doi.org/10.3390/ijms14046757 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011) Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot 62(12):4215–4228. https://doi.org/10.1093/jxb/err135 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J, Lin Q, Loh CS, Kumar PP (2014a) Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. Plant Cell Environ 37(7):1656–1671. https://doi.org/10.1111/pce.12272 CrossRefPubMedGoogle Scholar
  72. Krishnamurthy P, Tan XF, Lim TK, Lim TM, Kumar PP, Loh CS, Lin Q (2014b) Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis. Proteomics 14(21–22):2545–2557. https://doi.org/10.1002/pmic.201300527 CrossRefPubMedGoogle Scholar
  73. Krishnamurthy P, Mohanty B, Wijaya E, Lee DY, Lim TM, Lin Q, Xu J, Loh CS, Kumar P (2017) Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis, Scientific Reports 7:10031Google Scholar
  74. Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17(4):651–663. https://doi.org/10.1007/s11248-007-9145-4 CrossRefPubMedGoogle Scholar
  75. Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16(6):1378–1391. https://doi.org/10.1105/tpc.021683 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y (2010a) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep 29(9):977–986. https://doi.org/10.1007/s00299-010-0883-z CrossRefPubMedGoogle Scholar
  77. Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH (2010b) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophys Acta 1804(4):929–940. https://doi.org/10.1016/j.bbapap.2010.01.004 CrossRefPubMedGoogle Scholar
  78. Li W, Zhang C, Lu Q, Wen X, Lu C (2011) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168(15):1743–1752. https://doi.org/10.1016/j.jplph.2011.03.018 CrossRefPubMedGoogle Scholar
  79. Li W, Zhao F, Fang W, Xie D, Hou J, Yang X, Zhao Y, Tang Z, Nie L, Lv S (2015) Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front Plant Sci 6:732. https://doi.org/10.3389/fpls.2015.00732 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, Wang CS, Lai CC (2014) Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 14(15):1759–1775. https://doi.org/10.1002/pmic.201300276 CrossRefPubMedGoogle Scholar
  81. Luo J, Tang S, Peng X, Yan X, Zeng X, Li J, Li X, Wu G (2015) Elucidation of cross-talk and specificity of early response mechanisms to salt and PEG-simulated drought stresses in Brassica napus using comparative proteomic analysis. PLoS One 10(10):e0138974. https://doi.org/10.1371/journal.pone.0138974 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ma FS, Peterson CA (2003) Current insights into the development, structure and chemistry of the endodermis and exodermis of roots. Can J Bot 81:405–421CrossRefGoogle Scholar
  83. Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471(2):146–158. https://doi.org/10.1016/j.abb.2008.01.010 CrossRefPubMedGoogle Scholar
  84. Manaa A, Ahmed HB, Smiti S, Faurobert M (2011) Salt-stress induced physiological and proteomic changes in tomato (Solanum lycopersicum) seedlings. OMICS 15(11):801–809. https://doi.org/10.1089/omi.2011.0045 CrossRefPubMedGoogle Scholar
  85. Mastrobuoni G, Irgang S, Pietzke M, Assmus HE, Wenzel M, Schulze WX, Kempa S (2012) Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMC Genomics 13:215. https://doi.org/10.1186/1471-2164-13-215 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Maurel C, Chrispeels MJ (2001) Aquaporins. A molecular entry into plant water relations. Plant Physiol 125(1):135–138CrossRefPubMedPubMedCentralGoogle Scholar
  87. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624. https://doi.org/10.1146/annurev.arplant.59.032607.092734 CrossRefPubMedGoogle Scholar
  88. Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Very AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68(3):468–479. https://doi.org/10.1111/j.1365-313X.2011.04701.x CrossRefPubMedGoogle Scholar
  89. Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829. https://doi.org/10.3389/fpls.2017.00829 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Nat NVK, Sanjeeva S, Laksiri G, Stanford FB (2004) Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol 145:217–230CrossRefGoogle Scholar
  92. Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5(16):4185–4196. https://doi.org/10.1002/pmic.200401282 CrossRefPubMedGoogle Scholar
  93. Palmblad M, Mills DJ, Bindschedler LV (2008) Heat-shock response in Arabidopsis thaliana explored by multiplexed quantitative proteomics using differential metabolic labeling. J Proteome Res 7(2):780–785. https://doi.org/10.1021/pr0705340 CrossRefPubMedGoogle Scholar
  94. Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9(5):2584–2599. https://doi.org/10.1021/pr100034f CrossRefPubMedGoogle Scholar
  95. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010 CrossRefPubMedGoogle Scholar
  96. Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199–217CrossRefGoogle Scholar
  97. Parida AK, Das AB, Mittra B, Mohanty P (2004a) Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Z Naturforsch C 59(5–6):408–414PubMedCrossRefGoogle Scholar
  98. Parida AK, Das AB, Mohanty P (2004b) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161(5):531–542. https://doi.org/10.1078/0176-1617-01084 CrossRefPubMedGoogle Scholar
  99. Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57(5):1109–1118. https://doi.org/10.1093/jxb/erj134 CrossRefPubMedGoogle Scholar
  100. Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8(12):2676–2686. https://doi.org/10.1074/mcp.M900052-MCP200 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Peterson CA (1988) Exodermal Casparian bands: their significance for ion uptake by roots. Physiol Plant 72:204–208CrossRefGoogle Scholar
  102. Popp M (1995) Salt resistance in herbaceous halophytes and mangroves. Prog Bot 56:415–429Google Scholar
  103. Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep 26(9):1663–1672. https://doi.org/10.1007/s00299-007-0354-3 CrossRefPubMedGoogle Scholar
  104. Qing DJ, Lu HF, Li N, Dong HT, Dong DF, Li YZ (2009) Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. Plant Cell Physiol 50(4):889–903. https://doi.org/10.1093/pcp/pcp038 CrossRefPubMedGoogle Scholar
  105. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–1767. https://doi.org/10.1104/pp.103.025742 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ranathunge K, Steudle E, Lafitte R (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217(2):193–205. https://doi.org/10.1007/s00425-003-0984-9 CrossRefPubMedGoogle Scholar
  107. Ranjithakumari BD, Radhakrishnan (2008) Plant proteomics. In: Nangia SB (ed) Plant with biotic and abiotic factors interaction proteomics. A. P. H. Publishing Corporation, New DelhiGoogle Scholar
  108. Rasoulnia A, Bihamta MR, Peyghambari SA, Alizadeh H, Rahnama A (2011) Proteomic response of barley leaves to salinity. Mol Biol Rep 38(8):5055–5063. https://doi.org/10.1007/s11033-010-0651-8 CrossRefPubMedGoogle Scholar
  109. Razavizadeh R, Ehsanpour AA, Ahsan N, Komatsu S (2009) Proteome analysis of tobacco leaves under salt stress. Peptides 30(9):1651–1659. https://doi.org/10.1016/j.peptides.2009.06.023 CrossRefPubMedGoogle Scholar
  110. Reinhardt DH, Rost TL (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot 35:563–574CrossRefGoogle Scholar
  111. Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrin JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6(20):5529–5548. https://doi.org/10.1002/pmic.200600260 CrossRefPubMedGoogle Scholar
  112. Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11:34. https://doi.org/10.1186/1471-2229-11-34 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2(9):1131–1145. https://doi.org/10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1CrossRefPubMedGoogle Scholar
  114. Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489(7414):109–113. https://doi.org/10.1038/nature11279 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Scholander PF (1968) How mangroves desalinate water. Physiol Plant 21:251–261CrossRefGoogle Scholar
  116. Schreiber L, Franke BR (2011) Endodermis and exodermis in roots. Wiley, ChichesterCrossRefGoogle Scholar
  117. Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280Google Scholar
  118. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31(3):279–292CrossRefPubMedGoogle Scholar
  119. Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1(1):139–145. https://doi.org/10.1038/nprot.2006.22 CrossRefPubMedGoogle Scholar
  120. Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010a) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C(4) plant. J Proteome Res 9(6):2882–2897. https://doi.org/10.1021/pr900974k CrossRefPubMedGoogle Scholar
  121. Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010b) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19. https://doi.org/10.1186/1477-5956-8-19 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops? J Proteome 74(8):1323–1337. https://doi.org/10.1016/j.jprot.2011.03.018 CrossRefGoogle Scholar
  123. Swami AK, Alam SI, Sengupta N, Sarin R (2011) Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environ Exp Bot 71:321–328CrossRefGoogle Scholar
  124. Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593. https://doi.org/10.1186/1471-2164-9-593 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol 50(3):439–446. https://doi.org/10.1093/pcp/pcp002 CrossRefPubMedGoogle Scholar
  126. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135(3):1697–1709. https://doi.org/10.1104/pp.104.039909 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Tan WK, Lim TK, Loh CS, Kumar P, Lin Q (2015) Proteomic characterisation of the salt gland-enriched tissues of the mangrove tree species Avicennia officinalis. PLoS One 10(7):e0133386. https://doi.org/10.1371/journal.pone.0133386 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437. https://doi.org/10.3109/07388551.2014.889080 CrossRefPubMedGoogle Scholar
  129. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60(5):795–804. https://doi.org/10.1111/j.1365-313X.2009.04000.x CrossRefPubMedGoogle Scholar
  130. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527CrossRefPubMedPubMedCentralGoogle Scholar
  131. Tsuzuki M, Moskvin OV, Kuribayashi M, Sato K, Retamal S, Abo M, Zeilstra-Ryalls J, Gomelsky M (2011) Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 77(21):7551–7559. https://doi.org/10.1128/AEM.05463-11 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Reddy PCO, Surabhi GK, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641CrossRefGoogle Scholar
  133. Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32(3):621–628CrossRefPubMedGoogle Scholar
  134. Vincent D, Ergul A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58(7):1873–1892. https://doi.org/10.1093/jxb/erm012 CrossRefPubMedGoogle Scholar
  135. Wakeel A, Asif AR, Pitann B, Schubert S (2011) Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J Plant Physiol 168(6):519–526. https://doi.org/10.1016/j.jplph.2010.08.016 CrossRefPubMedGoogle Scholar
  136. Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63(5):609–623. https://doi.org/10.1007/s11103-006-9112-0 CrossRefPubMedGoogle Scholar
  137. Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52(4):873–891CrossRefPubMedGoogle Scholar
  138. Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008a) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8(7):1470–1489. https://doi.org/10.1002/pmic.200700569 CrossRefPubMedGoogle Scholar
  139. Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y (2008b) Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta 228(1):167–177. https://doi.org/10.1007/s00425-008-0727-z CrossRefPubMedGoogle Scholar
  140. Wang X, Fan P, Song H, Chen X, Li X, Li Y (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 8(7):3331–3345. https://doi.org/10.1021/pr801083a CrossRefPubMedGoogle Scholar
  141. Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, Lin Y, Huang L, Xing J, Chen W (2014) Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS One 9(1):e83141. https://doi.org/10.1371/journal.pone.0083141 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wang J, Meng Y, Li B, Ma X, Lai Y, Si E, Yang K, Xu X, Shang X, Wang H, Wang D (2015) Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell Environ 38(4):655–669. https://doi.org/10.1111/pce.12428 CrossRefPubMedGoogle Scholar
  143. Wei P, Wang L, Liu A, Yu B, Lam HM (2016) GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Front Plant Sci 7:1082. https://doi.org/10.3389/fpls.2016.01082 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Wen G, Cai L, Liu Z, Li DK, Lou Q, Li XF, Wan J, Yang Y (2011) Arabidopsis thaliana VDAC2 involvement in salt stress response pathway. Afr J Biotechnol 10:11588–11593Google Scholar
  145. Witzel K, Weidner A, Surabhi GK, Borner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60(12):3545–3557. https://doi.org/10.1093/jxb/erp198 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Wu X, Gong F, Cao D, Hu X, Wang W (2016) Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics 16(5):847–865. https://doi.org/10.1002/pmic.201500301 CrossRefPubMedGoogle Scholar
  147. Xianjun P, Xingyong M, Weihong F, Man S, Liqin C, Alam I, Lee BH, Dongmei Q, Shihua S, Gongshe L (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30(8):1493–1502. https://doi.org/10.1007/s00299-011-1058-2 CrossRefPubMedGoogle Scholar
  148. Xiong Y, Peng X, Cheng Z, Liu W, Wang GL (2016) A comprehensive catalog of the lysine-acetylation targets in rice (Oryza sativa) based on proteomic analyses. J Proteome 138:20–29. https://doi.org/10.1016/j.jprot.2016.01.019 CrossRefGoogle Scholar
  149. Xu C, Sibicky T, Huang B (2010) Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep 29(6):595–615. https://doi.org/10.1007/s00299-010-0847-3 CrossRefPubMedGoogle Scholar
  150. Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5(1):235–244. https://doi.org/10.1002/pmic.200400853 CrossRefPubMedGoogle Scholar
  151. Yan H, Li Q, Park SC, Wang X, Liu YJ, Zhang YG, Tang W, Kou M, Ma DF (2016) Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem 109:20–27. https://doi.org/10.1016/j.plaphy.2016.09.003 CrossRefPubMedGoogle Scholar
  152. Yang Y, Tang RJ, Jiang CM, Li B, Kang T, Liu H, Zhao N, Ma XJ, Yang L, Chen SL, Zhang HX (2015) Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnol J 13(7):962–973. https://doi.org/10.1111/pbi.12335 CrossRefPubMedGoogle Scholar
  153. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580(4):1183–1191. https://doi.org/10.1016/j.febslet.2005.12.009 CrossRefPubMedGoogle Scholar
  154. Yeo AR, Yeo ME, Flowers TJ (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38:1141–1153CrossRefGoogle Scholar
  155. Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10(9):3852–3870. https://doi.org/10.1021/pr101102p CrossRefPubMedGoogle Scholar
  156. Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012a) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11(1):49–67. https://doi.org/10.1021/pr200861w CrossRefPubMedGoogle Scholar
  157. Zhang YM, Liu ZH, Wen ZY, Zgang HM, Yang F, Guo XL (2012b) The vacuolar Na+–H+ antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa (Medicago sativa). Funct Plant Biol 39:708–716CrossRefGoogle Scholar
  158. Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. J Plant Physiol 166(12):1296–1306. https://doi.org/10.1016/j.jplph.2009.02.007 CrossRefPubMedGoogle Scholar
  159. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445CrossRefPubMedGoogle Scholar
  161. Zhuang J, Zhang J, Hou XL, Wang F, Xiong AS (2014) Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotiuc stress in vegetable crops. Crit Rev Plant Sci 33:225–237CrossRefGoogle Scholar
  162. Zorb C, Herbst R, Forreiter C, Schubert S (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9(17):4209–4220. https://doi.org/10.1002/pmic.200800791 CrossRefPubMedGoogle Scholar
  163. Zorb C, Schmitt S, Muhling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10(24):4441–4449. https://doi.org/10.1002/pmic.201000231 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pannaga Krishnamurthy
    • 1
  • Lin Qingsong
    • 1
  • Prakash P. Kumar
    • 1
  1. 1.Department of Biological Sciences, and NUS Environmental Research Institute (NERI)National University of SingaporeSingaporeSingapore

Personalised recommendations