Skip to main content
Log in

Salt tolerance mechanisms in mangroves: a review

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Mangroves are woody plants which form the dominant vegetation in tidal, saline wetlands along tropical and subtropical coasts. The current knowledge concerning the most striking feature of mangroves i.e., their unique ability to tolerate high salinity is summarized in the present review. In this review, we shall discuss recent studies that have focused on morphological, anatomical, physiological, biochemical, molecular and genetic attributes associated with the response to salinity, some of which presumably function to mediate salt tolerance in the mangroves. Here we shall also review the major advances recently made at both the genetic and the genomic levels in mangroves. Salinity tolerance in mangroves depends on a range of adaptations, including ion compartmentation, osmoregulation, selective transport and uptake of ions, maintenance of a balance between the supply of ions to the shoot, and capacity to accommodate the salt influx. The tolerance of mangroves to a high saline environment is also tightly linked to the regulation of gene expression. By integrating the information from mangroves and performing comparisons among species of mangroves and non-mangroves, we could give a general picture of salt tolerance mechanisms of mangroves, thus providing a new avenue for development of salt tolerance in crop plants through effective breeding strategies and genetic engineering techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1967

    CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    CAS  PubMed  Google Scholar 

  • Ashihara H, Adachi K, Otawa M, Yasumoto E, Fukushima Y, Kato M, Sano H, Sasamoto H, Baba S (1997) Compatible solutes and inorganic ions in the mangrove plant Avicennia marina and their effects on the activities of enzymes. Z Naturforsh 52c:433–440

    Google Scholar 

  • Ashihara H, Wakahara S, Suzuki M, Kato A, Sasamoto H, Baba S (2003) Comparison of adenosine metabolism in leaves of several mangrove plants and a poplar species. Plant Physiol Biochem 41:133–139

    CAS  Google Scholar 

  • Aziz I, Khan MA (2001a) Effect of seawater on the growth, ion content and water potential of Rhizophora mucronata Lam. J Plant Res 114:369–373

    Google Scholar 

  • Aziz I, Khan MA (2001b) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot 70:259–268

    CAS  Google Scholar 

  • Baconguis SR, Mauricio RA (1991) Forage and livestock production in the mangrove forest. Canopy 16:9–10

    Google Scholar 

  • Ball MC (1988a) Ecophysiology of mangroves. Trees Struct Funct 2:129–142

    Google Scholar 

  • Ball MC (1988b) Salinity tolerance in the mangrove Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning, and salt balance. Aust J Plant Physiol 15:447–464

    Google Scholar 

  • Ball MC (1996) Comparative ecophysiology of mangrove forest and tropical lowland moist forest. In: Mulkey SS, Chazdon RL, Smith AO (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 461–469

    Google Scholar 

  • Ball MC, Farquhar MC (1984) Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol 74:7–11

    PubMed  CAS  Google Scholar 

  • Ball MC, Passioura JB (1995) Carbon gain in relation to water use: photosynthesis in mangroves. In: Schulze ED, Caldwell NM (eds) Ecophysiology of photosynthesis. Springer, Berlin, Heidelberg, New York, pp 247–257

    Google Scholar 

  • Ball MC, Pidsley SM (1995) Growth responses to salinity in relation to distribution of two mangrove species, Sonneratia alba and S. lanceolata, in northern Australia. Funct Ecol 9:77–85

    Google Scholar 

  • Banzai T, Hershkovits G, Katcoff DJ, Hanagata N, Dubinsky Z, Karube I (2002) Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza. Plant Sci 162:499–505

    CAS  Google Scholar 

  • Banzai T, Hanagata N, Dubinsky Z, Karube I (2003) Fructose-2, 6-bisphosphate contents were increased in response to salt, water and osmotic stress in leaves of Bruguiera gymnorrhiza by differential changes in the activity of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphate 2-phosphatase. Plant Mol Biol 53:51–59

    CAS  PubMed  Google Scholar 

  • Becker P, Asmat A, Mohamad J, Moksin M, Tyree MT (1997) Sap flow rates of mangrove trees are not usually low. Trees Struct Funct 11:432–443

    Google Scholar 

  • Biebl R, Kinzel H (1965) Blattbau und Salzhaushalt von Laguncularia racemosa (L) Gaertn. f. und anderer Mangrovenbäume auf Puerto Rico. Ost Bot Zeit 112:56–93

    CAS  Google Scholar 

  • Burchett MD, Clarke CJ, Field CD, Pulkownik A (1989) Growth and respiration in two mangrove species at a range of salinities. Physiol Plant 75:299–303

    Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20:579–588

    CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Clough BF (1984) Growth and salt balance of the mangroves. Avicennia marina (Forsk.) Vierh. and Rhizophora stylosa Griff. in relation to salinity. Aust J Plant Physiol 11:419–430

    CAS  Google Scholar 

  • Clough BF, Sim RG (1989) Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapor pressure deficit. Oecologia 79:38–44

    Google Scholar 

  • Clough BF, Andrew TJ, Cowan IR (1982) Physiological processes in mangroves. In: Clough BF (ed) Mangrove ecosystems in Australia: structure, function and management. Australian National Press, Canberra, pp 193–210

    Google Scholar 

  • Cram JW, Torr PG, Ross DA (2002) Salt allocation during leaf development and leaf fall in mangroves. Trees Struct Funct 16:112–119

    CAS  Google Scholar 

  • Das AB, Basak UC, Das P (1994) Karyotype diversity in three species of Heritiera, a common mangrove tree on the Orissa coast. Cytobios 80:71–78

    Google Scholar 

  • Das AB, Parida AK, Basak UC, Das P (2002) Studies on pigments, proteins and photosynthetic rates in some mangroves and mangrove associates from Bhitarkanika. Orissa Mar Biol 141:415–422

    CAS  Google Scholar 

  • Datta PN, Ghosh M (2003) Estimation of osmotic potential and free amino acids in some mangroves of the Sundarbans, India. Acta Bot Croast 62:37–45

    CAS  Google Scholar 

  • De Graaf GJ, Xuan TT (1999) Extensive shrimp farming, mangrove clearance and marine fisheries in the southern provinces of Vietnam. Mangroves Salt Marshes 2:159–166

    Google Scholar 

  • Delphine S, Alvino A, Zacchini M, Loreto F (1998) Consequence of salt stress on conductance to CO2 diffusion, Rubisco characteristics of spinach leaves. Aust J Plant Physiol 25:395–402

    Google Scholar 

  • Downton WJS (1982) Growth and osmotic relations of the mangrove, Avicennia marina, as influenced by salinity. Aust J Plant Physiol 9:519–528

    CAS  Google Scholar 

  • Drennan PM, Berjak P, Pammenter NW (1992) Ion gradients and adenosine triphosphatase localization in the salt glands of Avicennia marina (Forssk.) Vierh. S Afr J Bot 58:486–490

    CAS  Google Scholar 

  • Dschida DJ, Platt-Aloia KA, Thomson WW (1992) Epidermal peels of Avicennia germinans (L.) Stearn: a useful system to study the function of salt gland. Ann Bot 70:501–509

    Google Scholar 

  • Ellison AM, Farnsworth EJ (1997) Simulated sea-level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia 112:435–446

    Google Scholar 

  • Elmqvist T, Cox PA (1996) The evolution of vivipary in flowering plants. Oikos 77:3–9

    Google Scholar 

  • Elphick CH, Sanders D, Maathuis FJM (2001) Critical role of divalent cations and Na+ efflux in Arabidopsis thaliana salt tolerance. Plant Cell Environ 24:733–740

    CAS  Google Scholar 

  • Ezawa S, Tada Y (2009) Identification of salt tolerance genes from the mangrove plant Bruguiera gymnorrhiza using Agrobacterium functional screening. Plant Sci 176:272–278

    CAS  Google Scholar 

  • Fernandes MEB (1991) Tool use and predation of oysters (Crassostrea rhizophorae) by the tufted capuchin, Cebus apella apella, in brackish-water mangrove swamp. Primates 32:529–531

    Google Scholar 

  • Field CD (1995) Impact of expected climate change on mangroves. Hydrobiologia 295:75–81

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Google Scholar 

  • Fu XH, Huang YL, Deng SL, Zhou RC, Yang GL, Ni XW, Li WJ, Shi SH (2005) Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci 169:147–154

    CAS  Google Scholar 

  • Garbarino J, DuPont FM (1988) NaCl induces a Na+/H+ antiport in tonoplast vesicles from barley roots. Plant Physiol 86:231–236

    CAS  PubMed  Google Scholar 

  • Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options. Aquat Bot 89:237–250

    Google Scholar 

  • Golldack D, Deitz KJ (2001) Salt induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125:1643–1654

    CAS  PubMed  Google Scholar 

  • Gopal B, Krishnamurthy K (1993) Wetlands of South Asia. In: Whigham DF, Dy Kyjova D, Hejny S (eds) Wetlands of the world. Kluwer, Netherlands, pp 345–414

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Griffiths ME, Rotjan RD, Ellmore GS (2008) Differential salt deposition and excretion on leaves of Avicennia germinans mangroves. Caribb J Sci 44:267–271

    Google Scholar 

  • Hamilton LS, Murphy DH (1988) Use and management of nipa palm (Nypa fruticans, Arecaeae): a review. Econ Bot 42:206–213

    Google Scholar 

  • Hanagata N, Takemura T, Karube I, Dubinsky Z (1999) Salt water relationships in mangrove. Isr J Plant Sci 47:63–76

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Henkel PA (1979) The concept of vivipary in the plant world (in Russian). Zh Obshch Biol 40:60–66

    Google Scholar 

  • Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T, Takabe T (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol Biol 45:353–363

    CAS  PubMed  Google Scholar 

  • Hogarth PJ (1999) The biology of mangroves. Oxford University Press, New York

    Google Scholar 

  • Huang W, Fang XD, Li GY, Lin QF, Zhao WM (2003) Cloning and expression analysis of salt responsive gene from Kandelia candel. Biol Plant 47:501–507

    Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118

    Google Scholar 

  • Jagtap TG, Nagle VL (2007) Response and adaptability of mangrove habitats from the Indian subcontinent to changing climate. Ambio 36:328–334

    CAS  PubMed  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25:865–876

    CAS  PubMed  Google Scholar 

  • Kartawinata K, Adisomarto S, Soemodihardjo S, Tantra IGM (1979) Status Pengetahuan Hutan Bakau di Indonesia. In: Soemodihardjo S, Nontji A, Djamali A (eds) Proceedings of seminar ecosystem Hutan mangrove, LIPI, Indonesia, pp 21–39

  • Kemis JR (1984) Petiolar glands in Combretaceae: new observations and an anatomical description of the extra-floral nectar of buttonwood (Conocarpus erectus). Am J Bot 71:34

    Google Scholar 

  • Kemis JR, Lersten NR (1984) Petiolar glands in Combretaceae: review of past ambiguities and an anatomical description of the sunken gland of white mangrove (Laguncularia racemosa). Am J Bot 71:34–35

    Google Scholar 

  • Khan MA, Aziz I (2001) Salinity tolerance in some mangrove species from Pakistan. Wetl Ecol Manag 9:219–223

    Google Scholar 

  • Kim JH, Dupont L, Behling H, Versteegh GJM (2005) Impacts of rapid sea-level rise on mangrove deposit erosion: application of taraxerol and Rhizophora records. J Quat Sci 20:221–225

    Google Scholar 

  • Krauss KW, Lovelock CE, McKee KL, Lopez-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127

    Google Scholar 

  • Kura-Hotta M, Mimura M, Tsujimura T, Washitani-Nemoto S, Mimura T (2001) High salt-treatment-induced Na+ extrusion and low salt-treatment-induced Na+ accumulation in suspension-cultured cells of the mangrove plant, Bruguiera sexangula. Plant Cell Environ 24:1105–1112

    CAS  Google Scholar 

  • Lawton JR, Todd A, Naidoo DK (1981) Preliminary investigations into the structure of the roots of the mangroves Avicennia marina and Bruguiera gymnorrhiza in relation to ion uptake. New Phytol 88:713–722

    Google Scholar 

  • Li NY, Chen SL, Zhou XY, Li CY, Shao J, Wang RG, Fritz E, Huettermann A, Polle A (2008) Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorrhiza. Aquat Bot 88:303–310

    CAS  Google Scholar 

  • Lin P (1988) Mangrove vegetation. China Ocean Press, Beijing

    Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734

    CAS  PubMed  Google Scholar 

  • Loughland RA (1998) Mangal roost selection by the flying-fox Pteropus alecto (Megachiroptera: Pteropodidae). Mar Freshw Res 49:351–352

    Google Scholar 

  • Lovelock CE, Feller IC (2003) Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Oecologia 134:455–462

    PubMed  Google Scholar 

  • Low R, Rockel B, Kirsch M, Ratajczak R, Hortensteiner S, Martinoia E, Luttge U, Rausch T (1996) Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol 110:259–265

    CAS  PubMed  Google Scholar 

  • Maathuis FJM, Prins HBA (1990) Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive Plantago species. Plant Physiol 92:23–28

    CAS  PubMed  Google Scholar 

  • Mallery CH, Teas HJ (1984) The mineral ion relations of mangroves. I. Root cell compartments in a salt excluder and salt secreter species at low salinities. Plant Cell Physiol 25:1123–1131

    CAS  Google Scholar 

  • Martosubroto P, Naamin N (1977) Relationship between tidal forests (mangroves) and commercial shrimp production in Indonesia. Mar Res Indones 18:81–86

    Google Scholar 

  • Meher-Homji VM (1988) The Pichavaram mangroves. Blackbuck 4:1–12

    Google Scholar 

  • Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110:416–424

    CAS  PubMed  Google Scholar 

  • Miller PC, Hom J, Poole DK (1975) Water relations of three mangrove species in South Florida. Ecol Plant 10:355–367

    Google Scholar 

  • Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani-Nemoto S (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216:397–402

    CAS  PubMed  Google Scholar 

  • Mishra S, Das AB (2003) Effect of NaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum. Indian J Exp Biol 41:160–166

    PubMed  Google Scholar 

  • Miyama M, Hanagata N (2007) Microarray analysis of 7029 gene expression patterns in Burma mangrove under high-salinity stress. Plant Sci 172:948–957

    Google Scholar 

  • Miyama M, Tada Y (2008) Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorrhiza) to salt and osmotic stress. Plant Mol Biol 68:119–129

    CAS  PubMed  Google Scholar 

  • Miyama M, Shimizu H, Sugiyama M, Hanagata N (2006) Sequencing and analysis of 14,842 expressed sequence tags of Burma mangrove, Bruguiera gymnorrhiza. Plant Sci 171:234–241

    Google Scholar 

  • Mizobuchi A, Yamamoto Y (1989) Assembly of photosystem II polypeptides and expression of oxygen evolution activity in the chloroplasts of Euglena gracilis Z. during the dark–light transition. Biochim Biophys Acta 977:26–32

    CAS  Google Scholar 

  • Mukherjee AK, Acharya LK, Mattagajasingh I, Panda PC, Mohapatra T, Das P (2003) Molecular characterization of three Heritiera species using AFLP markers. Biol Plant 47:445–448

    CAS  Google Scholar 

  • Naidoo G, von Willert DJ (1995) Diurnal gas exchange characteristics and water use efficiency of three salt secreting mangroves at low and high salinities. Hydrobiologia 295:13–22

    CAS  Google Scholar 

  • Naidoo G, Rogalla H, von Willert DJ (1997) Gas exchange responses of a mangrove species, Avicennia marina, to waterlogged and drained conditions. Hydrobiologia 352:39–47

    CAS  Google Scholar 

  • Naidoo G, Tuffers AV, von Willert DJ (2002) Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. Trees Struct Funct 16:140–146

    CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    CAS  PubMed  Google Scholar 

  • Naskar KR, Mandal RN (1999) Ecology and biodiversity of Indian mangroves, vol I & II. Daya Publishers, New Delhi, India

    Google Scholar 

  • Nguyen PD, Ho CL, Harikrishna JA, Wong MCVL, Rahim RA (2006) Generation and analysis of expressed sequence tags from the mangrove plant, Acanthus ebracteatus Vahl. Tree Genet Genomes 2:196–201

    Google Scholar 

  • Nguyen PD, Ho CL, Harikrishna JA, Wong MCVL, Rahim RA (2007) Functional screening for salinity tolerant genes from Acanthus ebracteatus Vahl using Escherichia coli as a host. Trees Struct Funct 21:515–520

    CAS  Google Scholar 

  • Osborne DJ, Berjak P (1997) The making of mangroves: the remarkable pioneering role played by the seed of Avicennia marina. Endeavour 21:143–147

    Google Scholar 

  • Paliyavuth C, Clough B, Patanaponpaiboon P (2004) Salt uptake and shoot water relations in mangroves. Aquat Bot 78:349–360

    CAS  Google Scholar 

  • Pantoja O, Dainty J, Blumwald E (1989) Ion channels in vacuoles from halophytes and glycophytes. FEBS Lett 255:92–96

    CAS  Google Scholar 

  • Parani M, Lakshmi M, Senthilkumar P, Ram N, Parida A (1998) Molecular phylogeny of mangroves. V. Analysis of genome relationships in mangrove species using RAPD and RFLP markers. Theor Appl Genet 97:617–625

    CAS  Google Scholar 

  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45:28–36

    CAS  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004a) Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees Struct Funct 18:167–174

    CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004b) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Sanada Y, Mohanty P (2004c) Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat Bot 80:77–87

    CAS  Google Scholar 

  • Parida AK, Mittra B, Das AB, Das TK, Mohanty P (2005) High salinity reduces the content of a highly abundant 23-kDa protein of the mangrove Bruguiera parviflora. Planta 221:135–140

    CAS  PubMed  Google Scholar 

  • Passioura JB, Ball MC, Knight JH (1992) Mangroves may salinize the soil and in so doing limit their transpiration rate. Funct Ecol 6:476–481

    Google Scholar 

  • Pernetta JC (1993) Potential impact of climate change and sea level rise. In: Mangrove forests, climate change and sea level rise, IUCN, Gland, Switzerland, pp 22–32

  • Perry CT, Berkeley A, Smithers SG (2008) Microfacies characteristics of a tropical, mangrove-fringed shoreline, Cleveland Bay, Queensland, Australia: sedimentary and taphonomic controls on mangrove facies development. J Sediment Res 78:77–97

    Google Scholar 

  • Peterson CA (1988) Exodermal casparian bands: there significance for ion uptake by roots. Physiol Plant 72:204–208

    CAS  Google Scholar 

  • Pezeshki SR, De Laune RD, Patrick WH Jr (1990) Differential response of selected mangroves to soil flooding and salinity: gas exchange and biomass partitioning. Can J For Res 20:869–874

    Google Scholar 

  • Popp M (1984a) Chemical composition of Australian mangroves I. Inorganic ions and organic acids. Z Pflangenphysiol 113:395–409

    CAS  Google Scholar 

  • Popp M (1984b) Chemical composition of Australian mangroves II. Inorganic ions and organic acids. Z Pflangenphysiol 113:411–421

    CAS  Google Scholar 

  • Popp M, Larther F, Weigel P (1985) Osmotic adaptation in Australian mangroves. Vegetatio 61:247–253

    Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia mayina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    CAS  PubMed  Google Scholar 

  • Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154:421–436

    CAS  PubMed  Google Scholar 

  • Rajesh A, Arumugam R, Venkatesalu V (1999) Responses of Ceriops roxburghiana to NaCl stress. Biol Plant 42:143–148

    CAS  Google Scholar 

  • Ratajczak R, Richter J, Luttge U (1994) Adaptation of the tonoplast V-type H1-ATPase of Mesembryanthemum crystallinum to salt stress, C3-CAM transition and plant age. Plant Cell Environ 17:1101–1112

    CAS  Google Scholar 

  • Robertson AI, Alongi DM (1992) Tropical mangrove ecosystems. American Geophysical Union, Washington, DC

    Google Scholar 

  • Saenger P (1982) Morphological, anatomical and reproductive adaptations of Australian mangroves. In: Clough BF (ed), Mangrove ecosystems in Australia: structure, function and management. Australian Institute of Marine Science, Townsville, in association with Australian National University Press, Canberra, pp 153–191

  • Saenger P (2002) Mangrove ecology, silvaculture and conservation. Kluwer, Dordrecht, the Netherlands

    Google Scholar 

  • Saintilan N (1997) Above-and below-ground biomasses of two species of mangrove on the Hawkesbury river estuary, New South Wales. Mar Freshw Res 48:147–152

    CAS  Google Scholar 

  • Santisuk T (1983) Taxonomy of the terrestrial trees and shrubs in the mangrove formation in Thailand. In: The First UNDP/UNESCO Regional Training Course on Introduction to mangrove ecosystem. National Research Council, Bangkok

  • Sasekumar A, Chong VC, Leh MU, Cruz RD (1992) Mangroves as a habitat for fish and prawns. Hydrobiologia 247:195–207

    Google Scholar 

  • Scholander PF (1968) How mangroves desalinate seawater. Physiol Plant 21:251–261

    CAS  Google Scholar 

  • Scholander PF, Bradstreet ED, Hammel HT, Hemmingsen EA (1966) Sap concentrations in halophytes and other plants. Plant Physiol 41:529–532

    CAS  PubMed  Google Scholar 

  • Schumaker KS, Sze H (1987) Decrease of pH gradients in tonoplast vesicles by NO3 and Cl: evidence for H+-coupled anion transport. Plant Physiol 83:490–496

    CAS  PubMed  Google Scholar 

  • Selvam V (2003) Environmental classification of mangrove wetlands of India. Curr Sci 84:757–765

    Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    PubMed  Google Scholar 

  • Sheridan RP (1991) Epicaulous, nitrogen-fixing microepiphytes in a tropical mangal community, Guadeloupe, French West Indies. Biotropica 23:530–541

    Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    CAS  PubMed  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    CAS  PubMed  Google Scholar 

  • Sidhu SS (1975) Structure of epidermis and stomatal apparatus of some mangrove species. In: Walsh GE, Snedaker SC, Teas HJ (eds) Proceedings of the international symposium on biology and management of mangroves, vol I. Institute of Food and Agricultural Science, University of Florida, Gainesville, pp 394–401

    Google Scholar 

  • Sobrado MA (2002) Effect of drought on leaf gland secretion of the mangrove Avicennia Germinans L. Trees Struct Funct 16:1–4

    CAS  Google Scholar 

  • Sobrado MA (2004) Influence of external salinity on the osmolality of xylem sap. leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. Trees Struct Funct 18:422–427

    Google Scholar 

  • Sobrado MA (2005) Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43:217–221

    Google Scholar 

  • Sobrado MA, Ewe SML (2006) Linking hypersalinity to leaf physiology in Avicennia germinans and Laguncularia racemosa coexisting in a scrub mangrove forest at the Indian River Lagoon Florida. Trees 20:679–687

    Google Scholar 

  • Sobrado MA, Greaves ED (2000) Leaf secretion composition of the mangrove species Avicennia germinans (L.) in relation to salinity: a case study by using total-reflection X-ray fluorescence analysis. Plant Sci 159:1–5

    CAS  PubMed  Google Scholar 

  • Sperry JS, Tyree MT, Donnelly JR (1988) Vulnerability of xylem to embolism in a mangrove vs. an inland species of Rhizophoraceae. Physiol Plant 74:276–283

    Google Scholar 

  • Staus NL (1998) Habitat use and home range of West Indian whistling-ducks. J Wildl Manage 62:171–178

    Google Scholar 

  • Stelzer R, Kuo J, Koyro HW (1988) Substitution of Na+ by K+ in tissues and root vacuoles of barley (Hordeum vulgare L. cv.Aramir). J Plant Physiol 132:671–677

    CAS  Google Scholar 

  • Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ (2001) Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125:604–641

    CAS  PubMed  Google Scholar 

  • Su H, Golldack D, Zhao C, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482–1493

    CAS  PubMed  Google Scholar 

  • Suarez N, Medina E (2006) Influence of salinity on Na+ and K+ accumulation, and gas exchange in Avicennia germinans. Photosynthetica 44:268–274

    CAS  Google Scholar 

  • Suarez N, Sobrado MA (2000) Adjustments in leaf water relations of mangrove Avicennia germinans (L.) seedlings grown in salinity gradient. Tree Physiol 20:277–282

    PubMed  Google Scholar 

  • Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube J (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41:1279–1285

    CAS  PubMed  Google Scholar 

  • Takabe T, Nakamura T, Nomura M, Hayashi Y, Ishitani M, Muramoto Y, Tanaka A, Takabe T (1997) Glycinebetaine and the genetic engineering of salinity tolerance in plants. In: Satoh K, Murata N (eds) Stress responses of photosynthetic organisms. Elsevier Science, Amsterdem, pp 115–132

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot 68:15–28

    CAS  Google Scholar 

  • Takemura T, Hanagata N, Dubinsky Z, Karube I (2002) Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees Struct Funct 16:94–99

    CAS  Google Scholar 

  • Tam NFY, Wong YS, Lu CY, Berry R (1997) Mapping and characterization of mangrove plant communities in Hong Kong. Hydrobiologia 352:25–37

    Google Scholar 

  • Tanaka Y, Fukuda A, Nakamura A, Yamada A, Saito T, Ozeki Y, Mimura T (2000) Molecular cloning and characterization of mangrove Na+/H+ antiporter cDNA. Plant Cell Physiol 41(Suppl):27

    Google Scholar 

  • Taura T, Jwaikawa Y, Furumoto M, Katou K (1988) A model for radical radial water transport across plant roots. Protoplasma 144:170–179

    Google Scholar 

  • Tomascik T, Mah AJ, Nontji A, Moosa MK (1997) The ecology of the Indonesian seas, Part II. Eric Oey, Singapore

    Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Tomlinson PB, Cox PA (2000) Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae: vivipary explained? Bot J Linn Soc 134:215–231

    Google Scholar 

  • Turner RE (1992) Coastal wetlands and penaeid shrimp habitat. In: Stroud RE (ed) Stemming the tide of coastal fish habitat loss. Marine Recreational Fisheries Publication, vol 14. National Coalition for Marine Conservation, Savannah, GA, USA, pp 97–104

    Google Scholar 

  • UNEP-WCMC (2006) In the front line: shoreline protection and other ecosystem services from mangroves and coral reefs. UNEP-WCMC, Cambridge, UK, p 33

    Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S, Suzuki S, Futsuhara Y, Kawamitsu Y, Takabe T (2002) Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. J Biol Chem 277:18373–18382

    CAS  PubMed  Google Scholar 

  • Wang WQ, Ke L, Tam NFY, Wong YS (2002) Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Mar Biol 141:1029–1034

    CAS  Google Scholar 

  • Werner A, Stelzer R (1990) Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant Cell Environ 13:243–255

    CAS  Google Scholar 

  • Wong YY, Ho CL, Nguyen PD, Teo SS, Harikrishna JA, Rahim RA, Wong MCVL (2007) Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot 86:117–122

    CAS  Google Scholar 

  • Yamada A, Saitoh T, Mimura T, Ozeki Y (2002a) Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol 43:903–910

    CAS  PubMed  Google Scholar 

  • Yamada A, Sekiguchi M, Mimura T, Ozeki Y (2002b) The role of plant CCT alpha in salt- and osmotic-stress tolerance. Plant Cell Physiol 43:1043–1048

    CAS  PubMed  Google Scholar 

  • Yasumoto E, Adachi K, Kato M, Sasamoto H, Baba S, Ashihara H (1999) Uptake of inorganic ions and compatible solutes in cultured mangrove cells during salt stress. In Vitro Cell Dev Biol Plant 35:82–85

    CAS  Google Scholar 

  • Ye Y, Tam NFY, Lu CY, Wong YS (2005) Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species. Aquat Bot 83:193–205

    CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    CAS  Google Scholar 

  • Zeng HC, Deng LH, Zhang CF (2006) Cloning of salt tolerance-related cDNAs from the Mangrove plant Sesuvium portulacastrum L. J Integr Plant Biol 48:952–957

    CAS  Google Scholar 

  • Zheng WJ, Wang WQ, Lin P (1999) Dynamics of elemental contents during the development of hypocotyls and leaves of certain mangrove species. J Exp Mar Biol Ecol 233:247–257

    CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zimmermann U, Zhu JJ, Meinzer FC, Goldstein G, Schneider H, Zimmermann G, Benkert R, Thuermer F, Melcher P, Webb D, Haase A (1994) High molecular weight organic compounds in the xylem sap of mangroves: implications for long-distance water transport. Bot Acta 107:218–229

    CAS  Google Scholar 

  • Zimmermann U, Wagner HJ, Heidecker M, Mimietz S, Schneider H, Szimtenings M, Haase A, Mitlohner R, Kruck W, Hoffmann R, Konig W (2002) Implications of mucilage on pressure bomb measurements and water lifting in trees rooting in high-salinity water. Trees 16:100–111

    Google Scholar 

Download references

Acknowledgments

The financial support received from Council of Scientific and Industrial Research (CSIR), India (project no. NWP-020) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asish Kumar Parida.

Additional information

Communicated by U. Lüttge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parida, A.K., Jha, B. Salt tolerance mechanisms in mangroves: a review. Trees 24, 199–217 (2010). https://doi.org/10.1007/s00468-010-0417-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0417-x

Keywords

Navigation