Skip to main content
Log in

Proteomic response of barley leaves to salinity

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Drought and salinity stresses are adverse environmental factors that affect crop growth and yield. Proteomic analysis offers a new approach to identify a broad spectrum of genes that are expressed in living system. We applied this technique to investigate protein changes that were induced by salinity in barley genotypes (Hordeum vulgare L.), Afzal, as a salt-tolerant genotype and L-527, as a salt-sensitive genotype. The seeds of two genotypes were sown in pot under controlled condition of greenhouse, using a factorial experiment based on a randomized complete block design with three replications. Salt stress was imposed at seedling stage and leaves were collected from control and salt-stressed plant. The Na+ and K+ concentrations in leaves changed significantly in response to short-term stress. About 850 spots were reproducibly detected and analyzed on 2-DE gels. Of these, 117 proteins showed significant change under salinity condition in at least one of the genotypes. Mass spectrometry analysis using MALDI-TOF/TOF led to the identification some proteins involved in several salt responsive mechanisms which may increase plant adaptation to salt stress including higher constitutive expression level and upregulation of antioxidant, upregulation of protein involved in signal transduction, protein biosynthesis, ATP generation and photosynthesis. These findings may enhance our understanding of plant molecular response to salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wiebe BH, Eilers RG, Eilers WD, Brierly JA (2007) Application of a risk indicator for assessing trends in dry land salinization risk on the Canadian Prairies. Can J Soil Sci 87(2):213–224

    Article  Google Scholar 

  2. Zhu Jk (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71. doi:10.1016/S1360-1385(00)01838-0

    Article  PubMed  CAS  Google Scholar 

  3. Munns RA (2005) Gene and salt tolerance: bringing them together. New Phytol 167(3):645–663. doi:10.1111/j.1469-8137.2005.01487.x

    Article  PubMed  CAS  Google Scholar 

  4. Jaradat AA, shahid M, Al Maskari AY (2004) Genetic diversity in the batini barley landrace from Oman. Crop Sci 44(3):304–315

    Article  Google Scholar 

  5. Zeng L, Shannon MC (2000) Salinity effect on seedling growth and yield component of rice. Crop Sci 40(4):996–1003

    Article  Google Scholar 

  6. Alonso SI, Guma IR, Clausen AM (1999) Variability for salt tolerance during germination in Lolium multiflorum Lam natural in the Pampean grassland. Genet Res Crop Evol 46(1):87–94. doi:10.1023/A:1008638325484

    Article  Google Scholar 

  7. Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97(7):1133–1144. doi:10.1007/s001220051002

    Article  CAS  Google Scholar 

  8. Patterson J, Ford K, Cassin A, Natera S, Basic A (2007) Increased abundant of proteins involved in phytosiderophore production in Boron-tolerant barley. Plant Physiol 144:1612–1631. doi:10.1104/pp.107.096388

    Article  PubMed  CAS  Google Scholar 

  9. Salekdeh GhH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomics approach to analyzing drought- and salt-responsiveness in rice. Field Crop Res 76(2–3):199–219

    Article  Google Scholar 

  10. Chapman HD, Pratt PF (1961) Methods of analysis for soils, plants and waters. Div Agric Sci Univ Calif Berkeley, California

    Google Scholar 

  11. Damerval C, de Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedlings proteins. Electrophoresis 7(1):52–54. doi:10.1002/elps.115007010

    Article  CAS  Google Scholar 

  12. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8(2):93–99. doi:10.1002/elps.1150080203

    Article  CAS  Google Scholar 

  13. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858. doi:10.1021/ac950914h

    Article  PubMed  CAS  Google Scholar 

  14. Gobom J, Schuerenberg M, Mueller M, Theiss D (2001) Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation—a protocol for MALDI-MS peptide analysis in proteomics. Anal Chem 73(3):434–438. doi:10.1021/ac001241s

    Article  PubMed  CAS  Google Scholar 

  15. Munns R, Rawson HM (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Aust J Plant Physiol 26(5):459–464. doi:10.1071/PP99049

    Article  Google Scholar 

  16. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  PubMed  CAS  Google Scholar 

  17. Garcia-sanchez F, Jifon JL, Carvajal M, Syvertsen JP (2002) Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Sci 162:705–712

    Article  CAS  Google Scholar 

  18. Schachtman DP, Liu WH (1999) Molecular pieces to the puzzle of interaction between potassium and sodium uptake in plants. Trends Plant Sci 4(7):281–287

    Article  PubMed  Google Scholar 

  19. Avron M, Gibbs M (1974) Properties of phosphoribulokinase of whole chloroplasts. Plant Physiol 53(2):136–139. doi:10.1104/pp.53.2.136

    Article  PubMed  CAS  Google Scholar 

  20. Graciet E, Lereton S, Gontero B (2004) Emergence of new regulatory mechanisms in the Benson–Calvin pathway via protein- protein interactions: a glyceraldehyde-3-phosphatedehydrogenase/CP12/phosphoribulokinase complex. J Exp Bot 55(400):1245–1254. doi:10.1093/jxb/erh107

    Article  PubMed  CAS  Google Scholar 

  21. Christine AR, Julie CL, Nicola MW, Susan P, Tristan AD (1992) cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-l,6-bisphosphatases. Eur J Biochem 205(3):1053–1059. doi:10.1111/j.1432-1033.1992.tb16873.x

    Article  Google Scholar 

  22. Fischer N, Hippler M (1998) The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. EMBO J 17(4):849–858. doi:10.1093/emboj/17.4.849

    Article  PubMed  CAS  Google Scholar 

  23. Schutze K, Steiner S, Pfannschmidt T (2008) Photosynthetic redox regulation of the plastocyanin promoter in tobacco. Physiol Plantarum 133(3):557–565. doi:10.1111/j.1399-3054.2008.01118.x

    Article  Google Scholar 

  24. Nielsen PS, Causing K (1993) In vitro binding of nuclear proteins to the barley plastocyanin gene promoter region. Eur J Biochem 217(1):97–104. doi:10.1111/j.1432-1033.1993.tb18223.x

    Article  PubMed  CAS  Google Scholar 

  25. Chaves MM, Flaxe J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560. doi:10.1093/aob/mcn125

    Article  PubMed  CAS  Google Scholar 

  26. Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41(11):1279–1285. doi:10.1093/pcp/pcd061

    Article  PubMed  CAS  Google Scholar 

  27. Murota KI, Ohshita Y, Watanabe A, Aso S, Sato F, Yamada Y (1994) Changes related to salt tolerance in thylakoid membranes of photoautotrophically cultured green tobacco cells. Plant Cell Physiol 35(1):107–113

    CAS  Google Scholar 

  28. Peskan-Berghöfer T, Neuwirth J, Kusnetsov V, Oelmüller R (2005) Suppression of heterotrimeric G-protein β-subunit affects anther shape, pollen development and inflorescence architecture in tobacco. Planta 220(5):737–746. doi:10.1007/s00425-004-1393-4

    Article  PubMed  Google Scholar 

  29. Bolwell GP, Wojtaszek P (1999) Role of active oxygen species and NO in plant defense responses. Curr Opin Plant Biol 2(4):287–294

    Article  PubMed  CAS  Google Scholar 

  30. Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378(3):203–206. doi:10.1016/0014-5793(95)01448-9

    Article  PubMed  CAS  Google Scholar 

  31. Schurmann P, Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51:371–400. doi:10.1146/annurev.arplant.51.1.371

    Article  PubMed  CAS  Google Scholar 

  32. Yano H, Kuroda S, Buchanan BB (2002) Disulfide proteome in the analysis of protein function and structure. Proteomics 2(9):1090–1096. doi:10.1002/1615-9861(200209)2:9<1090:AID-PROT1090>3.0.CO;2-1

    Article  PubMed  CAS  Google Scholar 

  33. Hajheydari M, Eivazi A, Buchman BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6(4):1451–1460. doi:10.1021/pr060570j

    Article  Google Scholar 

  34. Rajguru SN, Banks SW, Gossett DR, Lucas MC, Millhollon EP (1999) Antioxidant response to salt stress during fiber development in cotton ovules. J Cotton Sci 3:11–18

    CAS  Google Scholar 

  35. Salekdeh GH, Siopongco J, Wada LJ, Ghareyazi B, Bennett JP (2000) Proteomic analysis of rice during drought stress and recovery. Proteomics 2:1131–1145

    Article  Google Scholar 

  36. Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40(7):725–732

    PubMed  CAS  Google Scholar 

  37. Dadashi Dooki A, Mayer-Posner FJ, Askari H, Ziaee AA, Salekdeh GH (2006) Proteomic response of rice young panicles to salinity. Proteomics 6(24):6498–6507. doi:10.1002/pmic.200600367

    Article  Google Scholar 

  38. Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, Mariana S, Miranda ND, Barier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57(8):1697–1709. doi:10.1093/jxb/erj160

    Article  PubMed  CAS  Google Scholar 

  39. Hall A, Karplus AP, Poole BL (2009) Typical 2-Cys peroxiredoxins—structures, mechanisms and functions. FEBS J 276(9):2469–2477. doi:10.1111/j.1742-4658.2009.06985.x

    Article  PubMed  CAS  Google Scholar 

  40. Kitajima S (2008) Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-Cys peroxiredoxin. Photochem Photobiol 84(6):1404–1409. doi:10.1111/j.1751-1097.2008.00452.x

    Article  PubMed  CAS  Google Scholar 

  41. Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4(7):2072–2081. doi:10.1002/pmic.200300741

    Article  PubMed  CAS  Google Scholar 

  42. Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol 50(3):439–446. doi:10.1093/pcp/pcp002

    Article  PubMed  CAS  Google Scholar 

  43. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66(1–2):73–86. doi:10.1007/s11103-007-9253-9

    Article  PubMed  CAS  Google Scholar 

  44. Elmlund H, Lundqvist J, Al-Karadaghi S, Hansson M, Hebert H, Lindahl M (2008) A new cryo-EM single-particle ab initio reconstruction method visualizes secondary structure elements in an ATP-fueled AAA+ motor. J Mol Biol 375(4):934–947. doi:10.1016/j.jmb.2007.11.028

    Article  PubMed  CAS  Google Scholar 

  45. Von Wettstein D, Henningsen KW, Boynton C, Kannangara G, Nielsen OF (1971) The genetic control of chloroplast development in barley. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  46. Gadjieva R, Axelson E, Olsson U (2005) Analysis of gun phenotype in barley magnesium chelatase and Mg-protoporphyrin IX monomethyl ester cyclase mutants. Plant Physiol Biochem 43(10–11):901–908. doi:10.1016/j.plaphy.2005.08.003

    Article  PubMed  CAS  Google Scholar 

  47. Haas FH, Heeg C, Queiroz R, Bauer A, Witz M, Hell R (2008) Mitochondrial serine acetyl transferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148(2):1055–1067. doi:10.1104/pp.108.125237

    Article  PubMed  CAS  Google Scholar 

  48. Wan XY, Liu JY (2008) Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteomics 7(8):1469–1488. doi:10.1074/mcp.M700488-MCP200

    Article  PubMed  CAS  Google Scholar 

  49. May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49(321):649–667

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Professor Claire Gay, York university of UK, facility for performing the MS analysis and associated bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolrahman Rasoulnia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasoulnia, A., Bihamta, M.R., Peyghambari, S.A. et al. Proteomic response of barley leaves to salinity. Mol Biol Rep 38, 5055–5063 (2011). https://doi.org/10.1007/s11033-010-0651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0651-8

Keywords

Navigation