Skip to main content
Log in

Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Knowledge of stress-responsive proteins is critical for further understanding the molecular mechanisms of stress tolerance. The objectives of this study were to establish a proteomic map for a perennial grass species, creeping bentgrass (A. stolonifera L.), and to identify differentially expressed, salt-responsive proteins in two cultivars differing in salinity tolerance. Plants of two cultivars (‘Penncross’ and ‘Penn-A4’) were irrigated daily with water (control) or NaCl solution to induce salinity stress in a growth chamber. Salinity stress was obtained by adding NaCl solution of 2, 4, 6, and 8 dS m−1 in the soil daily for 2-day intervals at each concentration, and then by watering soil with 10 dS m−1 solution daily for 28 days. For proteomic map, using two-dimensional electrophoresis (2-DE), approximately 420 and 300 protein spots were detected in leaves and roots, respectively. A total of 148 leaf protein spots and 40 root protein spots were excised from the 2-DE gels and subjected to mass spectrometry analysis. In total, 106 leaf protein spots and 24 root protein spots were successfully identified. Leaves had more salt-responsive proteins than roots in both cultivars. The superior salt tolerance in ‘Penn-A4’, indicated by shoot extension rate, relative water content, and cell membrane stability during the 28-day salinity stress could be mainly associated with its higher level of vacuolar H+-ATPase in roots and UDP-sulfoquinovose synthase, methionine synthase, and glucan exohydrolase in leaves, as well as increased accumulation of catalase and glutathione S-transferase in leaves. Our results suggest that salinity tolerance in creeping bentgrass could be in part controlled by an alteration of ion transport through vacuolar H+-ATPase in roots, maintenance of the functionality and integrity of thylakoid membranes, sustained polyamine biosynthesis, and by the activation of cell wall loosening proteins and antioxidant defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves M, Francisco R, Martins I, Ricardo CPP (2006) Analysis of Lupinus albus leaf apoplastic proteins in response to boron deficiency. Plant Soil 279:1–11

    Article  CAS  Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 5:2542–2554

    Article  CAS  Google Scholar 

  • Baek D, Jin Y, Jeong JC, Lee H, Moon H et al (2008) Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. Phytochemistry 69:333–338

    Article  CAS  PubMed  Google Scholar 

  • Bernstein N, Meiri A, Zilberstaine M (2004) Root growth of avocado [Persea americana Mill] is more sensitive to salinity than shoot growth. J Am Soc Hortic Sci 129:188–192

    Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carrow RN, Duncan RR (1998) Salt-affected turfgrass sites: assessment and management. Wiley, New York

    Google Scholar 

  • Chang W, Huang L, Shen M, Webster C et al (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment and identification of proteins by mass spectrometry. Plant Physiol 122:295–317

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004.1–3004.10

    Article  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee A, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  CAS  PubMed  Google Scholar 

  • Duclos-Vallee JC, Capel F, Mabit H, Petit MA (1998) Phosphorylation of the hepatitis B virus core protein by glyceraldehyde-3-phosphate dehydrogenase protein kinase activity. J Gen Virol 79:1665–1670

    CAS  PubMed  Google Scholar 

  • Edwards R, Dixon D, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Engel M, Seifert M, Theisinger B, Seyfert U, Welter C (1998) Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A: two old enzymes combine for the novel Nm23 protein phosphotransferase function. J Biol Chem 273:20058–20065

    Article  CAS  PubMed  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    CAS  Google Scholar 

  • Ferreira S, Hjernø K, Larsen M, Wingsle G et al (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377

    Article  CAS  PubMed  Google Scholar 

  • Flores HE, Protacio CM, Signs MW (1989) Primary and secondary metabolism of polyamines in plants. In: Poulton JE, Romeo JT, Conn EE (eds) Plant nitrogen metabolism. Recent Advances Phytochemistry, vol 23. Plenum Press, New York, pp 329–393

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  CAS  PubMed  Google Scholar 

  • Gazanchian A, Hajheidari M, Sima NK, Salekdeh GH (2007) Proteome response of Elymus elongatum to severe water stress and recovery. J Exp Bot 58:291–300

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    Article  CAS  PubMed  Google Scholar 

  • Giavalisco P, Nordhoff E, Kreitler T, Kloppel K et al (2005) Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics 5:1902–1913

    Article  CAS  PubMed  Google Scholar 

  • Green L, Yee B, Buchanan B, Kamide K et al (1991) Ferredoxin and ferredoxin-nadp reductase from photosynthetic and nonphotosynthetic tissues of tomato. Plant Physiol 96:1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Hajheidari M, Salekdeh GH, Heidari M, Abdollahian-Noghabi M, Sadeghian SY (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  PubMed  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH et al (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Hrmova M, Harvey AJ, Wang J, Shirley NJ et al (1996) Barley β-d-glucan exohydrolases with β-d-glucosidase activity. J Biol Chem 271:5277–5286

    Article  CAS  PubMed  Google Scholar 

  • Imin N, Kerim T, Weinman JJ, Rolfe BG (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4:1873–1882

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Huang B (2002) Protein alterations in tall fescue in response to drought stress and abscisic acid. Crop Sci 42:202–207

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Bauwe H (1995) Serine hydroxymethyltransferase from Solanum tuberosum. Plant Physiol 107:271–272

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L et al (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Article  CAS  PubMed  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I et al (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62:1234–1244

    Article  CAS  PubMed  Google Scholar 

  • Lebherz HG, Leadbetter MM, Bradshaw RA (1984) Isolation and characterization of the cytosolic and chloroplast form of spinach leaf fructose diphosphate aldolase. J Biol Chem 259:1011–1017

    CAS  PubMed  Google Scholar 

  • Lee G, Carrow RN, Duncan RR (2004) Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci 166:1417–1425

    Article  CAS  Google Scholar 

  • Lee DG, Ahsan N, Lee S, Kang KY et al (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383

    Article  CAS  PubMed  Google Scholar 

  • Marcum KB, Murdoch CL (1990) Growth responses, ion relations, and osmotic adaptations of eleven C4 turfgrasses to salinity. Agron J 82:892–896

    Article  Google Scholar 

  • Messiaen J, Cambier P, Cutsem P (1997) Polyamines and pectins I. Ion exchange and selectivity. Plant Physiol 113:387–395

    CAS  PubMed  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D et al (2003) NDP kinase interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    Article  CAS  PubMed  Google Scholar 

  • Mooney BP, Miernyka JA, Greenlief CM, Thelena JJ (2006) Using quantitative proteomics of Arabidopsis roots and leaves to predict metabolic activity. Physiol Plant 128:237–250

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nagy E, Rigby WFC (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds Au-rich RNA in the NAD+ -binding region (Rossmann fold). J Biol Chem 270:2755–2769

    Article  CAS  PubMed  Google Scholar 

  • Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:4185–4196

    Article  CAS  PubMed  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt D (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plants under stress: soil and biotic factors. Wiley, New York, pp 177–236

    Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Pessarakli M, Touchane H (2006) Growth responses of bermudagrass and seashore paspalum under various levels of sodium chloride stress. J Food Agric Environ 4:240–243

    Google Scholar 

  • Plomion C, Lalanne C, Claverol S, Meddour H et al (2006) Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 6:6509–6527

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Wilhelm SJ, Marcum KB (2001) Comparative responses of two Kentucky bluegrass cultivars to salinity stress. Crop Sci 41:1895–1900

    Article  Google Scholar 

  • Ramagopal S (1987) Salinity stress induced tissue-specific proteins in barley seedlings. Plant Physiol 84:324–331

    Article  CAS  PubMed  Google Scholar 

  • Riccardi F, Gazeau P, Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant Physiol 117:1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acid. Arch Biochem Biophys 67:10–15

    Article  CAS  PubMed  Google Scholar 

  • Roth U, Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  CAS  PubMed  Google Scholar 

  • Russell DA, Wong DML, Sachs MM (1970) The anaerobic response of soybean. Plant Physiol 92:401–407

    Article  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276:3941–3946

    Article  CAS  PubMed  Google Scholar 

  • Sappl PG, Onate-Sanchez L, Singh KB, Millar AH (2004) Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol Biol 54:05–219

    Article  Google Scholar 

  • Sarnighausen E, Wurtz V, Heintz D, Dorsselaer AV, Resk R (2004) Mapping of the Physcomitrella patens proteome. Phytochemistry 65:1589–1607

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Sheffield J, Taylor N, Fauquet C, Chen S (2006) The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Proteomics 6:1588–1598

    Article  CAS  PubMed  Google Scholar 

  • Sioud M, Jespersen L (1996) Enhancement of hammerhead ri-bozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol 257:775–789

    Article  CAS  PubMed  Google Scholar 

  • Smith AP, DeRidder BP, Guo WJ, Seeley EH et al (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279:26098–26104

    Article  CAS  PubMed  Google Scholar 

  • Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Peng Z, Li C, Li F et al (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Article  CAS  PubMed  Google Scholar 

  • Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123

    Article  PubMed  Google Scholar 

  • Xu C, Huang B (2008) Proteomic response to heat stress in the roots of Agrostis grass species contrasting in heat tolerance. J Exp Bot 59:4183–4194

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Garrett WM, Sullivan JH, Caperna TJ, Natarajan S (2006) Separation and identification of soybean leaf proteins by two-dimensional gel electrophoresis and mass spectrometry. Phytochemistry 67:2431–2440

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Sullivan JH, Garrett WM, Caperna TJ, Natarajan S (2008a) Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry 69:38–48

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Xu Y, Huang B (2008b) Protein extraction for 2-dimensional gel electrophoresis of proteomic profiling in turfgrass. Crop Sci 48:1608–1614

    Article  CAS  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice roots. Proteomics 5:235–244

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Kwon HB, Peng HP, Shih MC (1993) Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101:209–216

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Wang Y, Zhang J, Shi W (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7:737–749

    Article  CAS  PubMed  Google Scholar 

  • Zhang XP, Glaser E (2002) Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sci 7:14–21

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Sauve R, Thannhauser TW (2009) Proteome changes induced by aluminium stress in tomato roots. J Exp Bot 60:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Emily Merewitz, Yan Xu, and Longxing Hu for critical review of the manuscript. Our thanks are also due to the Rutgers Center of Turfgrass Science for funding support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingru Huang.

Additional information

Communicated by J. Zou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Sibicky, T. & Huang, B. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep 29, 595–615 (2010). https://doi.org/10.1007/s00299-010-0847-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0847-3

Keywords

Navigation