Skip to main content
Log in

Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Dehydration-responsive element-binding (DREB) proteins are important transcription factors in plant stress responses and signal transduction. Based on high-throughput sequencing results, a new cDNA sequence encoding an LcDREB3a transcription factor from the drought-resistant forage grass, Leymus chinensis, was isolated by RACE PCR. Sequence similarity analysis indicates that the gene product is active in the ABA-responsive pathway, and real-time PCR-based expression analysis shows the transcript accumulates in response to a variety of stress treatments. These results indicate that LcDREB3a is involved in both ABA-dependent and -independent signal transduction in the stress-responsive process of L. chinensis. The identity of the gene product as a DREB transcription factor is supported by observations of its nuclear localization when transiently expressed as a GFP fusion in onion epidermal cells. Furthermore, LcDREB3a is able to activate reporter gene expression, and the protein is shown to specifically bind to the conserved DRE element in a yeast one-hybrid assay. The transgenic expression of LcDREB3a in Arabidopsis causes no growth retardation and induces the increased expression of stress tolerance genes compared to control, resulting in improved drought and salt stress tolerance. Thus, LcDREB3a, encoding a stress-inducible DREB transcription factor, could enhance the abiotic stress tolerance of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DRE:

Dehydration-responsive element

DREB:

DRE-binding protein

ERF:

Ethylene-responsive factor

JA:

Jasmonic acid

Spd:

Spermidine

Spm:

Spermine

SAMDC:

S-adenosylmethionine decarboxylase

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Birkenmeier GF, Ryan CA (1998) Wound signaling in tomato plants, evidence that ABA is not a primary signal for defense gene activation. Plant Physiol 117:687–693

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Li ZH, Pu SJ (1988) The observation and research on reproductive characteristics of Aneurolepidium chinensis. Res Grassl Ecosyst 2:193–208

    Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice Oryza sativa L., encode transcription activators that function in drought, high salt and coldresponsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  PubMed  CAS  Google Scholar 

  • Hirayama K, Shinozaki K (2007) Perception and transduction of abscisic acid signals, keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    Article  PubMed  CAS  Google Scholar 

  • Hong JP, Kim WT (2005) Isolation and functional characterization of the CaDREBLP1 gene encoding a dehydration-responsive element binding factor-like protein in hot pepper (Copsicum annuum L. cv. Pukang). Planta 220:875–888

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Liu JY (2006) Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochem Biophys Acta 1759:263–269

    PubMed  CAS  Google Scholar 

  • Huang B, Jin LG, Liu JY (2008) Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). J Plant Physiol 165:214–223

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Plaha P, Park JY, Hong CP, Lee IS, Yang ZH, Jiang GB, Kwak SS, Liu SK, Lee JS, Kim YA, Lim YP (2006) Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil H. Plant Sci 170:1081–1086

    Article  CAS  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  PubMed  CAS  Google Scholar 

  • Kizis D, Pages M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30:679–689

    Google Scholar 

  • Liu GS, Qi DM (2004) Research progress on the biology of Leymus chinensis. Acta Pratacult Sin 13:6–11

    CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Liu LQ, Zhu K, Yang YF, Wu J, Chen FD, Yu DY (2008a) Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). J Plant Res 121:215–226

    Article  PubMed  CAS  Google Scholar 

  • Liu ZP, Chen ZY, Pan J, Li XF, Su M, Wang LJ, Li HJ, Liu GS (2008b) Phylogenetic relationships in Leymus (Poaceae: Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Mol Phylo Evol 46:278–289

    Article  CAS  Google Scholar 

  • Qi DM, Zhang WD, Liu GS (2004) Leymus chinensis seed viability testing technology. Acta Pratacult Sin 13:89–93

    Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of theERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Teng NJ, Chen T, Jin B, Wu XQ, Huang ZH, Li XG, Wang YH, Mu XJ, Lin JX (2006) Abnormalities in pistil development result in low seed set in Leymus chinensis (Poaceae). Flora 201:658–667

    Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Wang ZW, Li LH, Han XG, Dong M (2004) Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level. Acta Oecol 26:255–260

    Article  Google Scholar 

  • Wang LJ, Li XF, Chen SY, Liu GS (2009) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnol Lett 31:313–319

    Article  PubMed  CAS  Google Scholar 

  • Xu ZZ, Zhou GS (2005) Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant Soil 269:131–139

    Article  CAS  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Wang AX, Xu XL (2007) Primary research on physiological and biochemistry characters of leymus chinensis under NaCl stress. Nat Sci Norm Harbin Norm Univ 23:96–99

    Google Scholar 

  • Zhang WD, Liu GS, Liu J, Liu F, Qi DM, Li FF, Dong GJ, Zhao JJ (2002) A preliminary study on self-incompatibility of Leymus chinensis. Acta Agrestia Sin 10:287–292

    Google Scholar 

  • Zhang WD, Liu GS, Chen SY, Li XF, Li HJ (2004) Molecular cloning, expression and activity assay of thioredoxinh—a gene related to self-incompatibility in Leymus chinensis. Acta Agron Sin 30:1192–1198

    CAS  Google Scholar 

  • Zhao W, Chen SP, Lin GH (2008) Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecol 196:85–99

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the National Basic Research Program of China (“973”, 2007CB108905), and the National Natural Science Foundation of China (30970291). We thank Professor Chong Kang and Xu Yunyuan for their generous offering pSN1301 vector.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shen Shihua or Liu Gongshe.

Additional information

Communicated by Q. Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2011_1058_MOESM1_ESM.tif

Supplementary Fig 1. Nucleotide and deduced amino acid sequence of the cDNA encoding LcDREB3a from L. chinensis. The AP2/EREBP domain is underlined; the N-terminal region, which might function as the nuclear localization signal, is framed. The 14th V and 19th E amino acid were labeled using pentacle (TIFF 2609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xianjun, P., Xingyong, M., Weihong, F. et al. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis . Plant Cell Rep 30, 1493–1502 (2011). https://doi.org/10.1007/s00299-011-1058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1058-2

Keywords

Navigation