Skip to main content
Log in

The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Responses of plants to salinity stress and the development of salt tolerance are extremely complex. Proteomics is a powerful technique to identify proteins associated with a particular environmental or developmental signal. We employed a proteomic approach to further understand the mechanism of plant responses to salinity in a salt-tolerant (Afzal) and a salt-sensitive (Line 527) genotype of barley. At the 4-leaf stage, plants were exposed to 0 (control) or 300 mM NaCl. Salt treatment was maintained for 3 weeks. Total proteins of leaf 4 were extracted and separated by two-dimensional gel electrophoresis. More than 500 protein spots were reproducibly detected. Of these, 44 spots showed significant changes to salt treatment compared to the control: 43 spots were upregulated and 1 spot was downregulated. Using MALDI-TOF-TOF MS, we identified 44 cellular proteins have been identified, which represented 18 different proteins and were classified into seven categories and a group with unknown biological function. These proteins were involved in various many cellular functions. Up regulation of proteins which involved in reactive oxygen species scavenging, signal transduction, protein processing and cell wall may increase plant adaptation to salt stress. The upregulation of the three of four antioxidant proteins (thioredoxin, methionine sulfoxide reductase and dehydroascorbate reductase) in susceptible genotype Line 527 suggesting a different tolerance mechanism (such as tissue tolerance) to tolerate a salinity condition in comparison with the salt sensitive genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  Google Scholar 

  2. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x

    Article  PubMed  CAS  Google Scholar 

  3. Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554. doi:10.1002/pmic.200500328

    Article  PubMed  CAS  Google Scholar 

  4. Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218. doi:10.1023/A:1024553303144

    Article  CAS  Google Scholar 

  5. Shavrukov Y, Gupta N, Miyazaki J, Baho M, Chalmers K, Tester M, Langridge P, Collins N (2010) HvNax3—a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics 10:277–291. doi:10.1007/s10142-009-0153-8

    Article  PubMed  CAS  Google Scholar 

  6. Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260. doi:10.1016/j.jplph.2007.01.013

    Article  PubMed  CAS  Google Scholar 

  7. Zorb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100. doi:10.1016/j.plantsci.2004.03.004

    Article  CAS  Google Scholar 

  8. Rasoulnia A, Bihamta MR, Peyghambari SA, Alizadeh H, Rahnama A (2011) Proteomic response of barley leaves to salinity. Mol Biol Rep 38:5055–5063. doi:10.1007/s11033-010-0651-8

    Article  PubMed  CAS  Google Scholar 

  9. Rahnama A, Poustini K, Tavakkol-Afshari R, Ahmadi A, Alizadeh H (2011) Growth properties and ion distribution in different tissues of bread wheat genotypes (Triticum aestivum L.) differing in salt tolerance. J Agron Crop Sci 197:21–30. doi:10.1111/j.1439-037X.2010.00437.x

    Article  CAS  Google Scholar 

  10. Damerval C, de Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54. doi:10.1002/elps.1150070108

    Article  CAS  Google Scholar 

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  12. Görg A, Postel W, Günther S (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531–546. doi:10.1002/elps.1150090913

    Article  PubMed  Google Scholar 

  13. Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis 22:2824–2831. doi:10.1002/1522-2683(200108)

    Article  PubMed  CAS  Google Scholar 

  14. Costa P, Bahrman N, Frigerio JM, Kremer A, Plomion C (1998) Water-deficit-responsive proteins in maritime pine. Plant Mol Biol 38:587–596. doi:10.1023/A:1006006132120

    Article  PubMed  CAS  Google Scholar 

  15. Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian S, Ober E, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960. doi:10.1002/pmic.200401101

    Article  PubMed  CAS  Google Scholar 

  16. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145. doi:10.1002/1615-9861(200209)

    Article  PubMed  CAS  Google Scholar 

  17. Blonder C, Majcherczyk A, Kues U, Polle A (2007) Early drought-induced changes to the needle proteome of Norway spruce. Tree Physiol 27:1423–1431. doi:10.1093/treephys/27.10.1423

    Article  Google Scholar 

  18. Luo S, Ishida H, Makino A, Mae T (2002) Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site. J Biol Chem 277:12382–12387. doi:10.1074/jbc.M111072200

    Article  PubMed  CAS  Google Scholar 

  19. Jordan DB, Chollet R (1983) Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J Biol Chem 258:13752–13758

    PubMed  CAS  Google Scholar 

  20. Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour A, Rastgar Jazii F, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19. doi:10.1186/1477-5956-8-19

    Article  PubMed  Google Scholar 

  21. Seidler A (1996) The extrinsic polypeptides of Photosystem ll. Biochim Biophys Acta 1277:35–60. doi:10.1016/S0005-2728(96)00102-8

    Article  PubMed  Google Scholar 

  22. Miyao M, Murata N (1989) The mode of binding of three extrinsic proteins of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex of spinach. Biochim Biophys Acta 977:315–321. doi:10.1016/S0005-2728(89)80086-6

    Article  CAS  Google Scholar 

  23. Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41:1279–1285. doi:10.1093/pcp/pcd061

    Article  PubMed  CAS  Google Scholar 

  24. Murota KI, Ohshita Y, Watanabe A, Aso S, Sato F, Yamada Y (1994) Changes related to salt tolerance in thylakoid membranes of photoautotrophically cultured green tobacco cells. Plant Cell Physiol 35:107–113

    CAS  Google Scholar 

  25. Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081. doi:10.1002/pmic.200300741

    Article  PubMed  CAS  Google Scholar 

  26. Pérez-Bueno ML, Rahoutei J, Sajnani C, Garcia-Luque I, Barón M (2004) Proteomic analysis of the oxygen-evolving complex of photosystem II and biotic stress: studies on Nicotania benthamiana infected with tobacco mosaic virus. Proteomics 4:418–425. doi:10.1002/pmic.200300655

    Article  PubMed  Google Scholar 

  27. Rich BE, Steitz JA (1987) Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, in vitro synthesis, and assembly. Mol Cell Biol 7:4065–4074. doi:0270-7306/87/114065-10

    PubMed  CAS  Google Scholar 

  28. Ringquist S, Jones T, Snyder EE, Gibson T, Boni I, Gold L (1995) High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. Biochemistry 34:3640–3648. doi:10.1021/bi00011a01918

    Article  PubMed  CAS  Google Scholar 

  29. Boni IV, Isaeva DM, Musychenko ML, Tzareva NV (1991) Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res 19:155–162. doi:10.1093/nar/19.1.15533

    Article  PubMed  CAS  Google Scholar 

  30. Ma Y, Cheng Z, Wang W, Sun Y (2007) Proteomic analysis of high yield rice variety mutated from spaceflight. Adv Space Res 40:535–539. doi:10.1016/j.asr.2007.05.028

    Article  CAS  Google Scholar 

  31. Kotusov VV, Kukhanova MK, Krayevsky AA, Gottikh BP (1976) Catalysis of the peptide bond formation by 50S subunits of E. Coli ribosomes with N-(formil) methionine ester of adenylic acid as peptide donor. Mol Biol Rep 3:151–156. doi:10.1007/BF00423229

    Article  PubMed  CAS  Google Scholar 

  32. Curtis D, Lehmann R, Zamore PD (1995) Translational regulation in development. Cell 81:171–178. doi:10.1016/0092-8674(95)90325-9

    Article  PubMed  CAS  Google Scholar 

  33. Johnstone O, Lasko P (2001) Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 35:365–406. doi:0066-4197/01/1215-0365

    Article  PubMed  CAS  Google Scholar 

  34. Botella MA, Xu Y, Prabha TN, Zhao Y, Narasimhan ML, Wilson KA, Nielsen SS, Bressan RA, Hasegawa PM (1996) Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol 112:1201–1210. doi:0032-0889/96/112/1201/10

    Article  PubMed  CAS  Google Scholar 

  35. Gosti F, Bertauche N, Vartanian N, Giraudat J (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet 246:10–18. doi:10.1007/BF00290128

    Article  PubMed  CAS  Google Scholar 

  36. Pernas M, Sanchez-Monge R, Salcedo G (2000) Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett 467:206–210. doi:10.1016/S0014-5793(00)01157-1

    Article  PubMed  CAS  Google Scholar 

  37. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  38. Chou IT, Gasser CS (1997) Characterisation of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin proteins. Plant Mol Biol 35:873–892. doi:10.1023/A:1005930024796

    Article  PubMed  CAS  Google Scholar 

  39. Sanchez JC, Schaller D, Ravier E, Golaz O, Jaccoud S, Belet M, Wilkins MR, James R, Deshusses J, Hochstrasser D (1997) Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18:150–155. doi:10.1002/elps.1150180127

    Article  PubMed  CAS  Google Scholar 

  40. Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumota TK, Zhu J, Cushman JC, Bressan RA, Hasegawa PM (2001) Genes that are uniquely stress-regulated in salt overly sensitive (sos) mutants. Plant Physiol 126:363–375

    Article  PubMed  CAS  Google Scholar 

  41. Witzel K, Weidneri A, Surabhi G, Varsheney R, Kunze G, Bck-sorlin GH, Borneri A, Mock H (2010) Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ 33:211–222. doi:10.1111/j.1365-3040.2009.02071.x

    Article  PubMed  CAS  Google Scholar 

  42. Ramachandran S, Christensen HE, Ishimaru Y, Dong CH, Chao-Ming W, Cleary AL, Chua NH (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol 124:1637–1647

    Article  PubMed  CAS  Google Scholar 

  43. Zhou F, Zhang Z, Gregersen P, Mikkelsen J, de Neergaard E, Collinge D, Thordal-Christensen H (1998) Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 117:33–41. doi:0032-0889/98/117/0033/09

    Article  PubMed  CAS  Google Scholar 

  44. Hurkman WJ, Lane BG, Tanaka CK (1994) Nucleotide sequence of a transcript encoding a germin-like protein that is present in salt-stressed barley (Hordeum vulgare L.) roots. Plant Physiol 104:803–804

    Article  PubMed  CAS  Google Scholar 

  45. Tamás L, Simonovicová M, Huttová J, Mistrík I (2004) Elevated oxalate oxidase activity is correlated with Al-induced plasma membrane injury and root growth inhibition in young barley roots. Acta Physiol Plant 26:85–93. doi:10.1007/s11738-004-0048-1

    Article  Google Scholar 

  46. Valentovicová K, Halusková L, Huttová J, Mistrík I, Tamás L (2009) Effect of heavy metals and temperature on the oxalate oxidase activity and lignification of metaxylem vessels in barley roots. Environ Exp Bot 66:457–462. doi:10.1016/j.envexpbot.2009.03.006

    Article  Google Scholar 

  47. Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607. doi:10.1093/jxb/erm207

    Article  PubMed  CAS  Google Scholar 

  48. Otero AS (2000) NM23/nucleoside diphosphate kinase and signal transduction. J Bioenerg Biomemb 32:269–275. doi:0145-479X/00/0600-0269

    Article  CAS  Google Scholar 

  49. Escobar Galvis ML, Marttila S, Hakansson G, Forsberg J, Knorpp C (2001) Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein. Plant Physiol 126:69–77

    Article  PubMed  CAS  Google Scholar 

  50. Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363. doi:10.1073/pnas.252641899

    Article  PubMed  CAS  Google Scholar 

  51. Dadashi Dooki A, Mayer-Posne F, Askari H, Zaiee A, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507. doi:10.1002/pmic.200600367

    Article  Google Scholar 

  52. Kav N, Srivastava S, Goonewardene L, Blade F (2004) Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol 145:217–230. doi:10.1111/j.1744-7348.2004.tb00378.x

    Article  CAS  Google Scholar 

  53. Rospert S, Dubaquie Y, Gautschi M (2002) Nascent-polypeptide associated complex. Cell Mol Life Sci 59:1632–1639. doi:1420-682X/02/101632-08

    Article  PubMed  CAS  Google Scholar 

  54. Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot 60:2005–2019. doi:10.1093/jxb/erp075

    Article  PubMed  CAS  Google Scholar 

  55. Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244. doi:10.1002/pmic.200400853

    Article  PubMed  CAS  Google Scholar 

  56. Vauclare P, Diallo N, Bourguignon J, Macherel D, Douce R (1996) Regulation of the expression of the glycine decarboxylase complex during pea leaf development. Plant Physiol 112:1523–1530. doi:0032-0889/96/112/1523/08

    PubMed  CAS  Google Scholar 

  57. Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stress on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133. doi:10.1074/mcp.M400210-MCP200

    Article  PubMed  CAS  Google Scholar 

  58. Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Chandra Obul Reddy P, Surabhi GK, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641. doi:10.1016/j.plantsci.2008.06.017

    Article  CAS  Google Scholar 

  59. Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109. doi:10.1046/j.1432-1327.2000.01701.x

    Article  PubMed  Google Scholar 

  60. Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134:1006–1016. doi:10.1104/pp.103.035782

    Article  PubMed  CAS  Google Scholar 

  61. Moskovitz J (2005) Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 1703:213–219. doi:10.1016/j.bbapap.2004.09.003

    PubMed  CAS  Google Scholar 

  62. Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308. doi:10.1093/pcp/pci246

    Article  PubMed  CAS  Google Scholar 

  63. Vadasserya J, Tripathib S, Prasadb R, Varmab A, Oelműllera R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274. doi:10.1016/j.jplph.2008.12.016

    Article  Google Scholar 

  64. Ushimarua T, Nakagawa T, Fujioka Y, Daichoa K, Naitob M, Yamauchic Y, Nonakad H, Amakoc K, Yamawakib K, Muratad N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184. doi:10.1016/j.jplph.2005.10.002

    Article  Google Scholar 

  65. O’Toole R, Williams HD (2003) Universal stress proteins and Mycobacterium tuberculosis. Res Microbiol 154:387–392. doi:10.1016/S0923-2508(03)00081-0

    Article  PubMed  Google Scholar 

  66. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45. doi:10.1007/s00726-007-0501-8

    Article  PubMed  CAS  Google Scholar 

  67. Cervelli M, Cona A, Angelini R, Polticelli F, Federico R, Mariottini P (2001) A barley polyamine oxidase isoform with distinct structural features and subcellular localization. Eur J Biochem 268:3816–3830. doi:10.1046/j.1432-1327.2001.02296.x

    Article  PubMed  CAS  Google Scholar 

  68. Laurenzi M, Rea G, Federico R, Tavladoraki P, Angelini R (1999) De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesocotyl: a role in the photomodulation of growth and cell wall differentiation. Planta 208:146–154

    Article  CAS  Google Scholar 

  69. Cooley T, Walters DR (2002) Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f. sp. Hordei. Plant Cell Environ 25:461–468. doi:10.1046/j.0016-8025.2001.00819.x

    Article  Google Scholar 

  70. Janicka-Russak M, Kabala K, Mlodzinska E, Klobus G (2010) The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. J Plant Physiol 167:261–269. doi:10.1016/j.jplph.2009.09.010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Kazem Poustini for assistance with the glasshouse experiment. This work was financially supported by the Center of Excellence of Agronomy, Breeding and Biotechnology of Forage Crops at the University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foad Fatehi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatehi, F., Hosseinzadeh, A., Alizadeh, H. et al. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39, 6387–6397 (2012). https://doi.org/10.1007/s11033-012-1460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1460-z

Keywords

Navigation