Skip to main content
Log in

Metabolic engineering of Escherichia coli for the production of phenylalanine and related compounds

  • Problems and Prospects
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

In this review, the metabolic engineering approaches including those used by the authors in creating phenylalanine producers based on Escherichia coli were systematized. Optimization of the amino acid biosynthesis was conducted in order to obtain significant quantities of phenylalanine and to ensure the availability of its direct precursors in cell metabolism—erythrose 4-phosphate and phosphoenolpyruvic acid. The possibility of altering global regulation mechanisms was investigated for a full reorientation of the metabolism to phenylalanine synthesis with the use of Csr (carbon storage regulator). The identification of the aromatic amino acids exporter YddG is associated with the use of the phenylalanine producer as a test-system. Novel approaches to phenylalanine producer construction (use of the “leaky” allele tyrA—ssrA, promoters of the phosphate regulon), as well as new methods of obtaining producers of similar amino acid tyrosine, were discussed. Examples of the synthesis of useful aromatic compounds from phenylalanine or its precursor, phenylpyruvic acid, with E. coli as the ecipient for foreign gene expression were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CB:

culture broth

PCR:

polymerase chain reaction

ATP:

adenosine triphosphate

FBA:

flux balance analysis

CSR:

carbon storage regulator

DAHP-synthase:

3-Deoxy-D-arabinoheptulosonate 7-phosphate synthase

E-4-P:

erythrose 4-phosphate

MFA:

metabolic flux analysis

NADPH:

nicotinamide adenine dinucleotide phosphate

PEP:

phosphoenolpyruvate

Phe:

phenylalanine

Pi:

inorganic phosphate

PTS:

phosphotransferase system

Pyr:

pyruvate

TCA cycle:

tricarboxylic acid cycle.

References

  1. Bongaerts, J., Kramer, M., Muller, U., Raeven, L., and Wubbolts, M., Metabolic engineering for microbial production of aromatic amino acids and derived compounds, Metab. Eng., 2001, vol. 3, no. 4, pp. 289–300.

    Article  CAS  PubMed  Google Scholar 

  2. Ikeda, M., Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering, Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 615–626.

    Article  CAS  PubMed  Google Scholar 

  3. Sprenger, G.A., From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate, Appl. Microbiol. Biotechnol., 2007, vol. 75, no. 4, pp. 739–749.

    Article  CAS  PubMed  Google Scholar 

  4. Alternative Sweeteners—US Industry Study with Forecasts for 2013–2018. http://www.freddoniagroup.com

  5. Becker, J. and Wittmann, C., Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development, Curr. Opin. Biotechnol., 2012, vol. 23, no. 5, pp. 718–726.

    Article  CAS  PubMed  Google Scholar 

  6. Backman, K., M.J. O’Connor, Maruyan, A., Rudd, E., Mckay, D., Balakrishnan, R., Radjai, M., Dipasquantonio, V., Shoda. D., Hatch, R., and Venkatasubramanian, K., Genetic engineering of metabolic pathways applied to the production of phenylalanine, Ann. N. Y. Acad. Sci., 1990, vol. 589, pp. 16–24.

    Article  CAS  PubMed  Google Scholar 

  7. Grinter, N.J., Developing an L-phenylalanine process, Chem. Tec., 1997, vol. 28, no. 7, pp. 33–37.

    Google Scholar 

  8. Bailey, J.E., Towards a science of metabolic engineering, Science, 1991, vol. 252, no. 5013, pp. 1668–1674.

    Article  CAS  PubMed  Google Scholar 

  9. Stephanopoulos, G., Metabolic fluxes and metabolic engineering, Metab. Eng., 1999, vol. 1, no. 1, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  10. Park, J.H. and Lee, S.Y., Towards systems metabolic engineering of microorganisms for amino acid production, Curr. Opin. Biotechnol., 2008, vol. 19, no. 5, pp. 454–460.

    Article  CAS  PubMed  Google Scholar 

  11. Esvelt, K.M. and Wang, H.H., Genome-scale engineering for systems and synthetic biology, Mol. Syst. Biol., 2013, vol. 9, no. 641. doi: 10.1038/msb.2012.66

    Google Scholar 

  12. Kern, A., Tilley, E., Hunter, I.S., Legisa, M., and Glieder, A., Engineering primary metabolic pathways of industrial micro-organisms, J. Biotechnol., 2007, vol. 129, no. 1, pp. 6–29.

    Article  CAS  PubMed  Google Scholar 

  13. Buschke, N., Schafer. R., Becker, J., and Wittmann, C., Metabolic engineering of industrial platform microorganisms for biorefinery applications—optimization of substrate spectrum and process robustness by rational and evolutive strategies, Bioresour. Technol., 2013, vol. 135, pp. 544–554.

    Article  CAS  PubMed  Google Scholar 

  14. Leuchtenerger, W., Huthmacher, K., and Drauz, K., Biotechnological production of amino acids and derivatives: current status and prospects, Appl. Microbiol. Biotechnol., 2005, vol. 69, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  15. Khamduang, M., Packdibamrung, K., Chutmanop, J., Chisti, Y., and Srinophakun, P., Production of L-phenylalanine from glycerol by a recombinant Escherichia coli, J. Ind. Microbiol. Biotechnol., 2009, vol. 36, no. 10, pp. 1267–1274.

    Article  CAS  PubMed  Google Scholar 

  16. Weiner, M., Albermann, C., Gottlieb, K., Sprenger, G.A., and Weuster-Botz, D., Fed-batch production of L-phenylalanine from glycerol and ammonia with recombinant Escherichia coli, Biochem. Eng. J., 2014, vol. 83, pp. 62–69.

    Article  CAS  Google Scholar 

  17. Ahn, J.O., Lee, H.W., Saha, R., Park, M.S., Jung, J.K., and Lee, D.Y., Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions, J. Microbiol. Biotechnol., 2008, vol. 18, no. 11, pp. 1773–1784.

    CAS  PubMed  Google Scholar 

  18. Pittard, J. and Yang, J., Biosynthesis of aromatic amino acids, in Escherichia coli and Salmonella: Cellular and Molecular Biology, 3rd ed., Hatfield, W., Section Ed., Washington: American Soc. Microbiol. Press, 2008. doi: 10.1128/ecosal.3.6.1.8

    Google Scholar 

  19. Postma, P.W., Lengeler, J.W., and Jacobson, G.R., Phosphoenolpyravate: carbohydrate phosphotranferase systems, in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. [Ed. F.C. Neidhardt]. Wasthington, DC: American Soc. Microbiol. Press, 1996. p. 1149–1174.

    Google Scholar 

  20. Forberg, C., Eliaeson, T., and Haggstrom, L., Correlation of theoretical and experimental yields of phenylalanine from non-growing cells of a rec Escherichia coli strain, J. Biotechnol., 1988, vol. 7, no. 4, pp. 319–332.

    Article  Google Scholar 

  21. Chen, R., Hatzimanikatis, V., Yap, W.M.G.J., Postma, P.W., and Bailey, J.E., Metabolic consequences of phosphotransferase (pts) mutation in a phenylalanine-producing recombinant Escherichia coli, Biotechnol. Prog., 1997, vol. 13, no. 6, pp. 768–775.

    Article  CAS  PubMed  Google Scholar 

  22. Keseler, I.M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Hama-Casto, S., Miniz-Racado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A.G., Mackie, A., Paulsen, I., Gunsalus, R.P., and Karp, P.D., EcoCyc: a comprehensive database of Escherichia coli biology, Nucleic Acid Res., 2011, vol. 39, pp. 583–590.

    Article  CAS  Google Scholar 

  23. Varma, A., Boesch, B.W., and Palsson, B.O., Biochemical production capabilities of Escherichia coli, Biotechnol. Bioeng., 1993, vol. 42, no. 1, pp. 59–73.

    Article  CAS  PubMed  Google Scholar 

  24. Klamt, S., Stelling, J., Ginkel, M., and Gilles, D.E., Flux analyzer: exploring structure, pathways, and flux distribution in metabolic networks on interactive flux maps, Bioinformatics, 2003, vol. 19, no. 2, pp. 261–269.

    Article  CAS  PubMed  Google Scholar 

  25. Toya, Y., Kono, N., Kazuharu, A., and Tomita, M., Metabolic flux analysis and visualization, J. Proteome Res., 2011, vol. 10, no. 8, pp. 3313–3323.

    Article  CAS  PubMed  Google Scholar 

  26. Flores, S., Gosset, G., Flores, N., de Graff, A.A. and Bolivar, F., Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by 13C labeling and NMR spectroscopy, Metab. Eng., 2002, vol. 4, no. 2, pp. 124–137.

    Article  CAS  PubMed  Google Scholar 

  27. Gosset, G., Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate; sugar phosphotransferase system, Microb. Cell Fact., 2005, vol. 4, no. 1. doi: 10.1186/1475-2859-4-14

    Google Scholar 

  28. Rodriquez, A., Martinez, J.A., Baez-Viveros, J.L., Flores, N., Hernandez-Chavez, G., Ramirez, O.T., Gosset, G., and Bolivar, F., Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF, Microb. Cell Fact., 2013, vol. 12, no. 86. doi: 10.1186/1475-2859-12-86

    Google Scholar 

  29. Barker, J.L. and Frost, J.W., Microbial synthesis of p-hydroxybenzoic acid from glucose, Biotechnol. Bioeng., 2001, vol. 76, no. 4, pp. 376–390.

    Article  CAS  PubMed  Google Scholar 

  30. Dell, K.A. and Frost, J.W., Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis, J. Am. Chem. Soc., 1993, vol. 115, no. 24, pp. 11581–11589.

    Article  CAS  Google Scholar 

  31. Stephanopoulos, G.N., Aristidou, A.A., and Nielsen, J., Metabolic Engineering: Principles and Methodologies, New York: Acad. Press, 1998.

    Google Scholar 

  32. Liu, S.P., Xiao, M.E., Zhang, I., Xu, J., Ding, Z.Y., Gu, Z.H., and Shi, G.Y., Production of L-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110, Process Biochem., 2013, vol. 48, no. 3, pp. 413–419.

    Article  CAS  Google Scholar 

  33. Nelms, J., Edwards, R.M., Warwick, J., and Fotheringham, I., Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase, Appl. Environ. Microbiol., 1992, vol. 58, no. 8, pp. 2592–2598.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Kikuchi, Y., Tsujimoto, K., and Kurahashi, O., Mutational analysis of the feedback sites of phenylalaninesensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli, Appl. Environ. Microbiol., 1997, vol. 63, pp. 761–762.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Choi, Y.J. and Tribe, D.E., Continuous production of phenylalanine using an Escherichia coli regulatory mutant, Biotechnol. Lett., 1982, vol. 4, no. 4, pp. 223–228.

    Article  CAS  Google Scholar 

  36. Polen, Y., Kramer, M., Bongaerts, J., Wubbolts, M., and Wendisch, V.F., The global gene expression response of Escherichia coli to L-phenylalanine, J. Biotechnol., 2005, vol. 115, no. 3, pp. 221–237.

    Article  CAS  PubMed  Google Scholar 

  37. Konstantinov, K.B. and Yoshida, T., On-line monitoring of representative structural variables in fed-batch cultivation of recombinant Escherichia coli for phenylalanine production, J. Ferm. Bioeng., 1990, vol. 70, no. 6, pp. 420–426.

    Article  CAS  Google Scholar 

  38. Konstantinov, K.B., Nishio, T.S., and Yoshida, T., Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production, J. Bioeng., 1991, vol. 71, no. 5, pp. 350–355.

    CAS  Google Scholar 

  39. Patnaik, R. and Liao, J.C., Engineering of Escherichia coli central metabolism for aromatic production with near theoretical yield, Appl. Environ. Microbiol., 1994, vol. 60, no. 11, pp. 3903–3908.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Liao, J.C., Hou, S.Y., and Chao, Y.P., Pathway analysis, engineering, and physiological considerations for redirecting central metabolism, Biotechnol. Bioeng., 1996, vol. 52, no. 1, pp. 129–140.

    Article  CAS  PubMed  Google Scholar 

  41. Frost, J.W., Snell, K.D., and Frost, K.M., Deblocking the common pathway of aromatic amino acid synthesis, EU Patent no. EP0763127, 1995.

    Google Scholar 

  42. Juinaga, D., Baidoo, E.E., Reding-Johanson, A.M., Batth, T.S., Burd, H., Mikhopadhyay, A., Petzold, C.J., and Keasling, J.D., Modular engineering of Ltyrosine production in Escherichia coli, Appl. Environ. Microbiol., 2012, vol. 78, no. 1, pp. 89–98.

    Article  CAS  Google Scholar 

  43. Chao, Y.P., Lai, Z.J., Chen, P., and Chern, J.T., Enhanced conversion rate of L-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12, Biotechnol. Prog., 1999, vol. 15, no. 3, pp. 453–458.

    Article  CAS  PubMed  Google Scholar 

  44. Thonhchuang, M., Pongsawasdi, P., Chisti, Y., and Packdibamrung, K., Design of a recombinant Escherichia coli for producing L-phenylalanine from glycerol, J. Microbiol. Biotechnol., 2012, vol. 28, no. 10, pp. 2937–2943.

    Article  CAS  Google Scholar 

  45. Wahl, A., Massaoudi, M.E., Schipper, D., Wiechert, W., and Takors, R., Serial 13C-based flux analysis of an L-phenylalanine producing E. coli strain using the sensor reactor, Biotechnol. Prog, 2004, vol. 20, no. 3, pp. 706–714.

    Article  CAS  PubMed  Google Scholar 

  46. Baez-Viveros, J.L, Osuna, J., Hernandez-Chavez, G., Soberon, X., Bolivar, F., and Gosset, G., Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli, Biotehcnol. Bioeng., 2004, vol. 87, no. 4, pp. 516–524.

    Article  CAS  Google Scholar 

  47. Baez-Viveros, J.L, Flores, N., Juarez, K., Castillo-Wspana, P., f. bolivar, g. gosset, Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine, Microb. Cell Fact., 2007, vol. 19, no. 13. doi: 10.1186/1475-2859-6-30

    Google Scholar 

  48. Doroshenko, V.G., Shakulov, R.S., Kazakova, S.M., Kivero, A.D., Yampolskaya, T.A., and Mashko, S.V., Construction of an L-phenylalanine-producing tyrosine-prototrophic Escherichia coli strain using tyrA ssrA-like tagged alleles, Biotechnol. Lett., 2010, vol. 32, no. 8, pp. 1117–1121.

    Article  CAS  PubMed  Google Scholar 

  49. Takagi, M., Nishio, Y., Oh, G., and Yoshida, T., Control of L-phenylalanine production by dual feeding of glucose and L-tyrosine, Biotechnol. Bioeng., 1996, vol. 52, no. 6, pp. 653–660.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, J., Liu, L., Zhou, H., Li, J., Du, G., and Chen, J., Comparative study of L-phenylalanine production in the growing and stationary phases during high cell density cultivation of an ausotrophic Escherichia coli, Biotechnol. Bioprocess Eng., 2011, vol. 16, no. 5, pp. 916–922.

    Article  CAS  Google Scholar 

  51. Shpanchenko, O.V., Bugaeva, E.Yu., Golovin, A.V., and Dontsova, O.A., Trans-translation: findings and hypotheses, Mol. Biol. (Moscow), 2010, vol. 44, no. 4, pp. 495–502.

    Article  CAS  Google Scholar 

  52. Eggeling, L. and Sahm, H., New ubiquitous translocators: amino acid export by corynebacterium glutamicum and Escherichia coli, Arch. Microbiol., 2003, vol. 180, no. 3, pp. 155–160.

    Article  CAS  PubMed  Google Scholar 

  53. Livshits, V.A., Zakataeva, N.P., Aleshin, V.V., and Vitushkina, M.V., Identification and characterization of the new gene rhtA in threonine and homoserine efflux in Escherichia coli, Res. Microbiol., 2003, vol. 154, pp. 123–135.

    Article  CAS  PubMed  Google Scholar 

  54. Brown, K.D., Maintenance and exchange of the aromatic amino acid pool in Escherichia coli, J. Bacteriol., 1971, vol. 106, no. 1, pp. 70–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Koyanagi, T., Katayama, T., Suzuki, H., and Kumagai, H., Identification of the LIV-I/LS system as the third phenylalanine trasporter in Escherichia coli K-12, J. Bacteriol., 2004, vol. 186, no. 2, pp. 343–350.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wang, P., Yang, J., Ishihama, A., and Pittard, J., Demonstration that the TyrR protein and RNA polymerase complex formed at the divergent P3 promoter inhibits binding of RNA polymerase to the major promoter, P1, of the aroP gene of Escherichia coli, J. Bacteriol., 1998, vol. 180, no. 20, pp. 5466–5472.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Tribe, D.E., Novel microorganism and method, US Patent No. US4681852, 1987.

    Google Scholar 

  58. Kramer, R., Secretion of amino acids by bacteria: physiology and mechanism, FEMS Microbiol. Rev., 1994, vol. 13, no. 1, pp. 75–94.

    Article  Google Scholar 

  59. Livshits, V.A., Vitushkina, M.V., Mashko, S.V., and Doroshenko, V.G., A method for obtaining L-amino acids: an Escherichia coli strain producing the amino acid, RF Patent no. 2222596, 2002.

    Google Scholar 

  60. Doroshenko, V., Airich, L., Vitushkina, M., Kolokolova, A., Livshits, V., and Mashko, S., YddG from Escherichia coli promotes export of aromatic amino acids, FEMS Microbiol. Letts., 2007, vol. 275, no. 2, pp. 312–318.

    Article  CAS  Google Scholar 

  61. Airich, L.G., Tsyrenzhapova, I.S., Vorontsova, O.V., Feofanov, A.V., Doroshenko, V.G., and Mashko, S.V., Membrane topology analysis of the Escherichia coli aromatic amino acid efflux protein YddG, J. Mol. Microbiol. Biotechnol., 2010, vol. 19, no. 4, pp. 189–197.

    Article  CAS  PubMed  Google Scholar 

  62. Saier, M.H., ffixJr., Yen, M.R., Noto, K., Tamang, D.G., and Elkan, C., The transporter classification database: recent advances, Nucleic Acid Res., 2009, vol. 37, pp. D274–278.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Tsyrenzhapova, I.S., Doroshenko, V.G., Airikh, L.G., Mironov, A.S., and Mashko, S.V., Gene yddG of Escherichia coli encoding the putative exporter of aromatic amino acids: constitutive transcription and dependence of the expression on the cell growth rate, Genetika, 2009, vol. 45, no. 5, pp. 525–532.

    CAS  Google Scholar 

  64. Hori, H., Yoneyama, H., Tobe, R., Ando, T., Isogai, E., and Katsumata, R., Inducible L-alanine exporter encoded by the novel gene ygaW (alaE) in Escherichia coli, Appl. Environ. Microbiol., 2011, vol. 77, no. 12, pp. 4027–4034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Gosset, G., Production of aromatic compounds in bacteria, Curr. Opin. Biotechnol., 2009, vol. 20, no. 6, pp. 651–658.

    Article  CAS  PubMed  Google Scholar 

  66. Wang, J., Cheng, L.K., Wang, J., Liu, Q., Shen, T., and Chen, N., Genetic engineering of Escherichia coli to enhance production of L-tryptophan, Appl. Microbiol Biotechnol., 2013, vol. 97, no. 17, pp. 7587–7596.

    Article  CAS  PubMed  Google Scholar 

  67. Takumi, K. and Nonaka, G., L-amino acid-producing bacterium and a method for producing an L-amino acid, EU Patent No. EP2218729, 2010.

    Google Scholar 

  68. Airich, L.G., Doroshenko, V.G., and Tsyrenzhapova, I.S., A mutant protein encoded by the yddG gene, and a method for producing aromatic L-amino acids using a bacterium of the genus Escherichia, International Patent Application No. WO2013129432, 2013.

    Google Scholar 

  69. Akhverdyan, V.Z., Savrasova, E.A., Kaplan, A.M., Lobanov, A.O., Vavilova, E.Yu., and Kozlov, Yu.I., Development of a mini-Mu system providing efficient integration of genetic material into the chromosome of the bacterium Escherichia coli and its amplification, Biotekhnologiya, 2007, no. 3, pp. 3–20.

    Google Scholar 

  70. Savrasova, E.A., Creation of a mini-Mu system devoid of selective markers for gene integration into the chromosome of the bacterium Escherichia coli, Akhverdyan, V.Z., Lobanov, A.O., Kaplan, A.M., and Kozlov, Yu.I., Biotekhnologiya, 2007, no. 4, pp. 3–17.

    Google Scholar 

  71. Martinez-Morales, F., Borges, A.C., Martinez, A., Shanmugam, K.T., and Ingram, L.O., Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction, J. Bacteriol., 1999, vol. 181, no. 22, pp. 7143–7148.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Haldimann, A. and Wanner, B.L., Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria, J. Bacteriol., 2001, vol. 183, no. 21, pp. 6384–6393.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Minaeva, N.I., Gak, E.R., Zimenkov, D.V., Skorokhodova, A.Y., Biryukova, I.V., and Mashko, S.V., Dual in/out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant e. coli strains with predesigned genome structure, BMC Biotechnol., 2008, vol. 8, no. 63. doi: 10.1186//14726750-8-63

    Google Scholar 

  74. Chiang, C.J., Chen, P.T., and Chao, Y.P., Repliconfree and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli, Biotechnol. Bioeng., 2008, vol. 101, no. 5, pp. 985–995.

    Article  CAS  PubMed  Google Scholar 

  75. Katashkina Zh.I., Skorokhodova, A.Yu., Zimenkov, D.V., Gulevich, A.Yu., Minaeva, N.I., Doroshenko, V.G., Biryukova, I.V., and Mashko, S.V., Tuning the expression level of a gene located on a bacterial chromosome, Mol. Biol. (Moscow), 2005, vol. 39, no. 5, pp. 719–726.

    Article  CAS  Google Scholar 

  76. Park, N.H. and Rogers, P.L., L-phenylalanine production in continuous culture using a hyperproducing mutant of Escherichia coli K-12, Chem. Eng. Commun., 1986, vol. 45, no. 16, pp. 185–196.

    Article  CAS  Google Scholar 

  77. Wanner, B.L., Phosphorus assimilation and control of the phosphate regulon, in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., Neidhardt, F.C., Ed., Washington, DC: ASM Press, 1996, pp. 1357–1381.

    Google Scholar 

  78. Doroshenko, V.G., Tsyrenzhapova, I.S., Krylov, A.A., Kiseleva, E.M., Erishev, V.Y., Kazakova, S.M., Biryukova, I.V., and Mashko, S.V., Pho regulon promoter-mediated transcription of the key pathway gene aroGFbr improves the performance of an L-phenylalanine-producing Escherichia coli strain, Appl. Microbiol. Biotechnol., 2010, vol. 8, no. 6, pp. 1287–1295.

    Article  CAS  Google Scholar 

  79. Nogueira, T. and Springer, M., Pst-transcriptional control by global regulators of gene expression in bacteria, Curr. Opin. Microbiol., 2000, vol. 3, no. 2, pp. 154–158.

    Article  CAS  PubMed  Google Scholar 

  80. Martínez-Antonio, A. and Collado-Vides, J., Identifying global regulators in transcriptional regulatory networks in bacteria, Curr. Opin. Microbiol., 2003, vol. 6, no. 5, pp. 482–489.

    Article  PubMed  CAS  Google Scholar 

  81. Alper, H. and Stephanopoulos, G., Global transcription machinery engineering: a new approach for improving cellular phenotype, Metab. Eng., 2007, vol. 9, no. 3, pp. 258–267.

    Article  CAS  PubMed  Google Scholar 

  82. McKee, A.E., Rutherford, B.J., Chivian, D.C., Baidoo, E.K., Juminaga, D., Kuo, D., Benke, P.I., Dietrich, J.A., Ma, S.M., Arkin, A.P., Petzold, C.J., Adas, P.D., Keasling, J.D., and Chhabra, S.R., Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli, Microb. Cell Fact., 2012, vol. 11, no. 79.

    Google Scholar 

  83. Tatarko, M. and Romeo, T., Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli, Curr. Microbiol., 2001, vol. 43, no. 1, pp. 26–32.

    Article  CAS  PubMed  Google Scholar 

  84. Yakandawala, N., Romeo, T., Friesen, A.D., and Madhyastha, S., Metabolic engineering of Escherichia coli to enhance phenylalanine production, Appl. Microbiol. Biotechnol., 2008, vol. 78, no. 2, pp. 283–291.

    Article  CAS  PubMed  Google Scholar 

  85. Romeo, T., Gong, M., Liu, M.Y., and Brun-Zinkernagel, A.M., Identification and molecular characterization of csrA, a pleiotropic gene form Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties, J. Bacteriol., 1993, vol. 175, no. 15, pp. 4744–4755.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Sabnis, N.A., Ynag, H., and Romeo, T., Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA, J. Biol. Chem., 1995, vol. 270, no. 49, pp. 29096–29104.

    Article  CAS  PubMed  Google Scholar 

  87. Romeo, T., Vakulskas, C.A., and Babitzke, P., Posttranscriptional regulation on a global scale: form and function of Csr/Rsm systems, Environ. Microbiol., 2013, vol. 15, no. 2, pp. 313–324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Lutke-Evesloh, T., Santos, C.N., and Stephanopoulos, G., Perspectives of biotechnological production of L-tyrosine and its applications, Appl. Microbiol. Biotechnol., 2007, vol. 77, no. 4, pp. 751–762.

    Article  CAS  Google Scholar 

  89. Olson, M.M., Templeton, L.JH., W. Su, Youderian, P., Sariaslani, F.S., Gatenby, A.A., and Van Dyk, T.K., Production of L-tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains, Appl. Microbiol. Biotechnol., 2007, vol. 74, no. 5, pp. 1031–1040.

    Article  CAS  PubMed  Google Scholar 

  90. Gatenby, A.A., Patnaik, R., Sariaslani, F.S., Suh, W., and Van Dyk, T.K., Method of producing an L-tyrosine over-producing bacterial strain, US Patent no. 7700328 B2, 2010.

    Google Scholar 

  91. Santos, C.N. and Stephanopoulos, G., Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli, Appl. Environ, Microbiol., 2008, vol. 74, no. 4, pp. 1190–1197.

    Article  CAS  Google Scholar 

  92. Santos, C.N., Xiao, W., and Stephanopoulos, G., Rational, combinatorial, and genomic approaches for engineering L-tyrosine production, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 34, pp. 13538–13543.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Deutscher, J., Francke, C., and Postma, P.W., How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria, Microbiol. Mol. Biol. Rev., 2006, vol. 70, no. 4, pp. 939–1031.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Tsujioto, N., Suzuki, T., and Ito, H., Method for producing target substance using microorganisms with reduced interactions between MalK and IIAGlc, US Patent US0070979999, 2006.

    Google Scholar 

  95. Takeshita, R., Kadotani, N., and Abe, K., Method for producing a target substance by fermentation, US Patent Application No. US20110003347, 2011.

    Google Scholar 

  96. Martinez, K., de Anda, R., Hernandez, G., Escalante, A., Gosset, G., Ramirez, O.T., and Bolivar, F.G., Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, Microb. Cell Fact., 2008, vol. 7, no. 1. doi: 101186/1475-2859-7-1

    Google Scholar 

  97. Sabrl, S., Nielsen, L.K., and Vickers, C.E., Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain, Appl. Environ. Microbiol., 2013, vol. 79, no. 2, pp. 478–487.

    Article  CAS  Google Scholar 

  98. Schmid, K., Ebner, R., Altenbuchner, J., Schmitt, R., and Lengler, J.W., Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400, Mol. Microbiol., 1988, vol. 2, no. 1, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  99. Doroshenko, V.G., Danilevich, V.N., Karataev, G.I., and Livshits, V.A., Structural and functional organization of the transposon Tn2555 carrying saccharose utilization genes, Mol. Biol., 1988, vol. 22, no. 3, pp..

    Google Scholar 

  100. Schmid, K., Ebner, R., Jahreis, K., Lengeler, J.W., and Titgemeyer, F., A sugar-specific porin, SerY, is involved in sucrose uptake in enteric bacteria, Mol. Microbiol., 1991, vol. 5, no. 4, pp. 941–950.

    Article  CAS  PubMed  Google Scholar 

  101. Bockman, J., Heuel, H., and Lengheler, J.W., Characterization of a chromosomally encoded, non-pts metabolic pathway for sucrose utilization in Escherichia coli EC3132, Mol. Gen. Genet., 1992, vol. 325, no. 1, pp. 22–32.

    Article  Google Scholar 

  102. Hochhut, B., Jahreis, K., Lengler, J.W., and Schmid, K., CTranscr94, a conjugative transposon found in enterobacteria, J. Bacteriol., 1997, vol. 179, no. 7, pp. 2097–2102a.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Jahreis, K., Bentler, L., Bockmann, J., Hans, S., Meyer, A., Siepelmeyer, J., and Lengeler, J.W., Adaptation of sucrose metabolism in the V wild-type strain EC3132, J. Bacteriol., 2002, vol. 184, no. 19, pp. 5307–5316.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Doroshenko, V.G. and Livshits, V.A., Structure and mode of transposition of tn2555 carrying sucrose utilization genes, FEMS Microbiol. Letts., 2004, vol. 233, no. 2, pp. 353–359.

    Article  CAS  Google Scholar 

  105. Livshits, V.A., Doroshenko, V.G., Mashko, S.V., Akhverdian, V.Z., and Kozlov, Yu.I., Method of producing amino acids using e. coli transformed with sucrose PTS genes, US Patent No. US717623, C07H21/04, C07K1/00, C12N1/20, C12N1/21, C12N15/09, C12N15/52, C12N9/00, C12N9/12, C12P13/04, C12P13/06, C12P13/08, C12P13/22, C12R1/19, 2007.

    Google Scholar 

  106. Zimenkov, D.V., E. coli chromosome regions preferred for gene insertion when using the integration system based on phage Mu transposon, Skorokhodova, A.Yu., Katashkina, Zh.I., Minaeva, N.I., Savrasova, E.A., Biryukova, I.V., Doroshenko, V.G., Akhverdyan, V.Z., and Mashko, S.V., Biotekhnologiya, 2004, no. 6, pp. 3–18.

    Google Scholar 

  107. Gomez, K., New insights into Escherichia coli metabolites: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol, Martínez-Gomez, K., Flores, N., Castaneda, H.M., Martínez-Batalar, G., Hernandez-Chavez, G., Rairez, O.T., Gosset, G., Encarnacion, S., and Bolivar, F., Microb. Cell Fact., 2012, vol. 11, no. 46. doi: 10.1186/1475-2859-11-46

    Google Scholar 

  108. Da Silva, G.P., Mack, M., and Contiero, J., Glycerol: a promising and abundant carbon source for industrial microbiology, Biotechnol. Adv., 2009, vol. 27, no. 1, pp. 30–39.

    Article  PubMed  CAS  Google Scholar 

  109. Chatzifragkou, A. and Papankikolaou, S., Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes, Appl. Microbiol. Biotechnol., 2012, vol. 95, no. 1, pp. 13–27.

    Article  CAS  PubMed  Google Scholar 

  110. Srinophakum, P., Reakasame, S., Khamduang, M., Packdibamrung, K., and Thanapimmetha, A., Potential of L-phenylalanine production form raw glycerol of palm biodiesel process by a recombinant Escherichia coli, Chiang Mai J., 2012, vol. 39, no. 1, pp. 59–68.

    Google Scholar 

  111. Taylor, P.P., Grinter, N.J., McCarthy, S.L., Pantaleone, D.P., Ton, J.L., Yoshida, R.K., and Fotheringham, I.G., D-phenolalanine biosynthesis using Escherichia coli: creation of a new metabolic pathway, in Applied Biocatalysis in Specialty Chemicals and Pharmaceuticals, Saha, B.C. and Demirjian, D.C., Eds., (ACS Symposium Series, vol. 776), Washington, DC: American Chem. Soc., 2001, pp. 65–75.

    Article  CAS  Google Scholar 

  112. Fotheringhan, I.G., Bledig, S.A., and Taylor, P.P., Characterization of the genes encoding d-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10207, J. Bacteriol., 1998, vol. 180, no. 16, pp. 4319–4323.

    Google Scholar 

  113. Sun, Z., Ning, Y., Liu, L., Liu, Y., Sun, B., Jiang, W., Yang, C., and Yang, S., Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of Sor R-andelic acid, Microb. Cell Fact., 2011, vol. 10, no. 1, pp. 1–13.

    Article  CAS  Google Scholar 

  114. Koma, D., Yamanaka, H., Moriyoshi, K., Ohmoto, T., and Sakai, K., Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway, Appl. Environ. Microbiol., 2012, vol. 78, no. 17, pp. 6203–6216.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Koma, D., Yamanaka, H., Moriyoshi, K., Ohmoto, T., and Sakai, K., A convenient method for multiple insertions of desired genes into target loci on the Escherichia coli chromosome, Appl. Microbiol. Biotechnol., 2012, vol. 93, no. 2, pp. 815–829.

    Article  CAS  PubMed  Google Scholar 

  116. McKenna, R. and Nielsen, D.R., Styrene biosynthesis form glucose by engineered E. coli, Metab. Eng., 2011, vol. 13, no. 5, pp. 544–554.

    Article  CAS  PubMed  Google Scholar 

  117. Koketsu, K., Mitsuhashi, S., and Tabata, K., Identification of homophenylalanine biosynthetic genes from the cyanobacterium Nostoc punctiforme PCC73102 and application to its microbial production by Escherichia coli, Appl. Environ. Microbiol., 2013, vol. 78, no. 17, pp. 2201–2208.

    Article  CAS  Google Scholar 

  118. Nijakmp, K., van Luijk, N., de Bont, J.A., and Wery, J., The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose, Appl. Microbiol. Biotechnol., 2005, vol. 69, no. 2, pp. 170–177.

    Article  CAS  Google Scholar 

  119. Klein-Marcuschamer, D., Santos, C.N., Yu, H., and Stephanopoulos, G., Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes, Appl. Environ. Microbiol., 2009, vol. 75, no. 4, pp. 2705–2711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Doroshenko.

Additional information

Original Russian Text © V.G. Doroshenko, V.A. Livshits, L.G. Airich, I.S. Shmagina, E.A. Savrasova, M.V. Ovsienko, S.V. Mashko, 2014, published in Biotekhnologiya, 2014, No. 4, pp. 8–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doroshenko, V.G., Livshits, V.A., Airich, L.G. et al. Metabolic engineering of Escherichia coli for the production of phenylalanine and related compounds. Appl Biochem Microbiol 51, 733–750 (2015). https://doi.org/10.1134/S0003683815070017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815070017

Keywords

Navigation