Skip to main content
Log in

Production of tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli K12 strains producing l-phenylalanine were converted to l-tyrosine-producing strains using a novel genetic method for gene replacement. We deleted a region of the E. coli K12 chromosome including the pheA gene encoding chorismate mutase/prephenate dehydratase, its leader peptide (pheL), and its promoter using a new polymerase chain reaction-based method that does not leave a chromosomal scar. For high level expression of tyrA, encoding chorismate mutase/prephenate dehydrogenase, its native promoter was replaced with the strong trc promoter. The linked ΔpheLA and Ptrc-tyrA::KanR genetic modifications were moved into l-phenylalanine producing strains by generalized transduction to convert l-phenylalanine-producing strains to l-tyrosine-producing strains. Moreover, introduction of a plasmid carrying genes responsible for sucrose degradation into these strains enabled l-tyrosine-production from sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–646

    Google Scholar 

  • Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW (1991) Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5:2913–2922

    CAS  PubMed  Google Scholar 

  • Baez-Viveros JI, Osuna J, Hernandez-Chavez G, Soberon X, Bolivar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of l-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87:516–524

    CAS  PubMed  Google Scholar 

  • Berry A (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256

    CAS  PubMed  Google Scholar 

  • Bockmann J, Heuel H, Lengeler JW (1992) Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. MGG Mol Gen Genet 235:22–32

    CAS  PubMed  Google Scholar 

  • Bongaerts J, Kramer M, Muller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300

    CAS  PubMed  Google Scholar 

  • Camajova J, Camaj P, Timko J (2002) Biosynthesis and transport of threonine in Escherichia coli. Biologia 57:695–705

    CAS  Google Scholar 

  • Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207

    CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    CAS  Google Scholar 

  • Debabov V (2003) The threonine story. Adv Biochem Eng Biotechnol 79:113–136

    CAS  PubMed  Google Scholar 

  • Dodge TC, Gerstner JM (2002) Optimization of the glucose rate profile for the production of tryptophan from recombinant E. coli. J Chem Technol Biotechnol 77:1238–1245

    CAS  Google Scholar 

  • Flores N, Flores S, Escalante A, de Anda R, Leal L, Malpica R, Georgellis D, Gosset G, Bolivar F (2005) Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. Metab Eng 7:70–87

    CAS  PubMed  Google Scholar 

  • Gerigk MR, Leon JRM, Sprenger G, Takors R (2003) Fermentation process for the production of l-phenylalanine. Eur Pat Appl EP 1318199

  • Gil-Hwan A, Sinskey AJ (2003) Accumulation of isoleucine intermediates in the isoleucine producing recombinant of Corynebacterium lactofermentum ATCC 21799. Food Sci Biotechnol 12:137–141

    Google Scholar 

  • Grinter NJ (1998) Developing an l-phenylalanine process. Chemtech 28:33–37

    CAS  Google Scholar 

  • Hashiguchi K-I, Matsui H, Kurahashi O (1999) Effects of a feedback-resistant aspartokinase III gene on l-isoleucine production in Escherichia coli K12. Biosci Biotechnol Biochem 63:2023–2024

    CAS  PubMed  Google Scholar 

  • Hernandez-Montalvo V, Valle F, Bolivar F, Gosset G (2001) Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57:186–191

    CAS  PubMed  Google Scholar 

  • Hochhut B, Jahreis K, Lengeler JW, Schmid K (1997) CTnscr94, a conjugative transposon found in enterobacteria. J Bacteriol 179:2097–2102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58:781–785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Sato K, Enel H, Hirose Y (1990) Improvement in microbial production of l-tyrosine by gene dosage effect of aroL gene encoding shikimate kinase. Agric Biol Chem 54:823–824

    CAS  PubMed  Google Scholar 

  • Jahreis K, Bentler L, Bockmann J, Hans S, Meyer A, Siepelmeyer J, Lengeler JW (2002) Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol 184:5307–5316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-H, Namgoong S, Kwak JH, Lee S-Y, Lee H-S (2000) Effects of tktA, aroFFBR, and aroL expression in the tryptophan-producing Escherichia coli. J Microbiol Biotechnol 10:789–796

    CAS  Google Scholar 

  • Kumar PA, Pisipati VGKM (2002) Synthesis and characterization of a novel ferroelectric liquid crystal compound derived from l-tyrosine. Z Naturforsch 57a:803–806

    Google Scholar 

  • Liu D-X, Fan C-S, Tao J-H, Liang G-X, Gao S-E, Wang H-J, Song D-X (2004) Integration of E. coliaroG-pheA tandem genes into Corynebacterium glutamicumtyrA locus and its effect on l-phenylalanine biosynthesis. World J Gastroenterol 10:3683–3687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutke-Eversloh T, Stephanopoulos G (2005) Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. Appl Environ Microbiol 71:7224–7228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti TK, Roy A, Mukherjee SK, Chatterjee SP (1995) Microbial production of l-tyrosine: a review. Hind Antibiot Bull 37:51–65

    CAS  Google Scholar 

  • Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Misset O, Blaauw M, Postma PW, Robillard GT (1983) Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanism of the transmembrane sugar translocation and phosphorylation. Biochemistry 22:6163–6170

    CAS  PubMed  Google Scholar 

  • Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 19:36–747

    Google Scholar 

  • Oezcelik I, Illknur S, Calik P, Guezide O, Tuncer H (2004) Metabolic engineering of aromatic group amino acid pathway in Bacillus subtilis for l-phenylalanine production. Chem Eng Sci 59:5019–5026

    CAS  Google Scholar 

  • Pittard AJ (1996) Biosynthesis of aromatic amino acids. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology. ASM, Washington, DC

    Google Scholar 

  • Roy A, Mukhopadhyyay SK, Chatterjee SP (1997) Production of tyrosine by auxotrophic and analog resistant mutants of Arthrobacter globiformis. J Sci Ind Res 56:727–733

    CAS  Google Scholar 

  • Sahin-Toth M, Frillingos S, Lengeler JW, Kaback HR (1995) Active transport by the CscB permease in Escherichia coli K-12. Biochem Biophys Res Commun 208:1116–1123

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Schmid K, Schupfner M, Schmitt R (1982) Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J Bacteriol 151:68–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid K, Ebner R, Altenbuchner J, Schmitt R, Lengeler JW (1988) Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Mol Microbiol 2:1–8

    CAS  PubMed  Google Scholar 

  • Schmid JW, Mauch K, Reuss M, Gilles ED, Kremling A (2004) Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli. Metab Eng 6:364–377

    CAS  PubMed  Google Scholar 

  • Shukla VB, Zhou S, Yomano LP, Shanmugam KT, Preston JF, Ingram LO (2004) Production of d(-)-lactate from sucrose and molasses. Biotechnol Lett 26:689–693

    CAS  PubMed  Google Scholar 

  • Sikander A, ul Hag I, Qadeer MA, Rajoka MI (2005) Double mutant of Aspergillus oryzae for improved production of l-DOPA (3,4-dihydroxyphenyl-l-alanine) from l-tyrosine. Biotechnol Appl Biochem 42:143–149

    Google Scholar 

  • Sindelar G (2003) Global expression analysis of the characterization of lysine production in Corynebacterium glutamicum. Berichte des forschungszentrums Juelich:1–146

  • Stock JB, Waygood EB, Meadow ND, Postma PW, Roseman S (1982) Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem 257:14543–14552

    CAS  PubMed  Google Scholar 

  • Takors R, Gerigk M, Paschold H, Wandrey C (2001) Principal-component analysis for microbial l-phenylalanine production. Bioprocess Biosyst Eng 24:93–99

    CAS  Google Scholar 

  • Takai A, Nishi R, Joe Y, Ito H (2005) l-tyrosine producing bacterium and a method for producing tyrosine. US Pat Appl US 2005/0277179 A1

  • Tribe DE (1987) Novel microorganism and method. US Patent 4,681,852

  • Yi J, Draths KM, Li K, Frost JW (2003) Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol Prog 19:1450–1459

    CAS  PubMed  Google Scholar 

  • Young IG, Gibson F, MacDonald CG (1969) Enzymic and nonenzymic transformations of chorismic acid and related cyclohexadienes. Biochim Biophys Acta 192:62–72

    CAS  PubMed  Google Scholar 

  • Yuan LZ, Rouviere PE, LaRossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–80

    CAS  PubMed  Google Scholar 

  • Wahl A, El Massaoudi M, Schipper D, Wiechert W, Takors R (2004) Serial 13C-based flux analysis of an l-phenylalanine-producing E. coli strain using the sector reactor. Biotechnol Prog 20:706–714

    CAS  PubMed  Google Scholar 

  • Zamir LO, Tiberio R, Jensen RA (1983) Differential acid-catalyzed aromatization of prephenate, arogenate, and spiro-arogenate. Tetrahedron Lett 24:2815–2818

    CAS  Google Scholar 

Download references

Acknowledgment

We thank B. Wanner for provision of plasmids pKD4 and pKD46.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina K. Van Dyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, M.M., Templeton, L.J., Suh, W. et al. Production of tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains. Appl Microbiol Biotechnol 74, 1031–1040 (2007). https://doi.org/10.1007/s00253-006-0746-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0746-2

Keywords

Navigation