Skip to main content
Log in

Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A wild-type isolate, EC3132, of Escherichia coli, that is able to grow on sucrose was isolated and its csc genes (mnemonic for chromosomally coded sucrose genes) transferred to strains of E. coli K12. EC3132 and all sucrose-positive exconjugants and transductants invariably showed a D-serine deaminase (Dsd)-negative phenotype. The csc locus maps adjacent to dsdA, the structural gene for the D-serine deaminase, and contains an inducible regulon, controlled by a sucrose-specific repressor CscR, together with structural genes for a sucrose hydrolase (invertase) CscA, for a d-fructokinase CscK, and for a transport system CscB. Based on DNA sequencing studies, this last codes for a hydrophobic protein of 415 amino acids. CscB is closely related to the β-galactoside transport system LacY (31.2% identical residues) and a raffinose transport system RafB (32,3% identical residues) of the enteric bacteria, both of the proton symport type. A two-dimensional model common to the three transport proteins, which is based on the integrated consensus sequence, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaeddinoglu NG, Charles HP (1979) Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for d-serine utilization. J Gen Microbiol 110:47–59

    Google Scholar 

  • Aslanidis C, Schmid K, Schmitt R (1989) Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. J Bacteriol 171:6753–6763

    Google Scholar 

  • Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW (1991) Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5:2913–2922

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Stuhl K (eds) (1989) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Bachmann BJ (1990) Linkage map of Escherichia coli K-12. Microbiol Rev 54:130–197

    Google Scholar 

  • Blatch GL, Scholle RR, Woods DR (1990) Nucleotide sequence and analysis of the Vibrio alginolyticus sucrose uptake-encoding region. Gene 95:17–23

    Google Scholar 

  • Bolshakova TN, Gabrielyan TR, Bourd GI, Gershanovitch VN (1978) Involvement of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system in regulation of transcription of catabolic genes. Eur J Biochem 89:483–490

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mot Biol 41:459–472

    Google Scholar 

  • Cornelis G, Ghosal D, Saedler H (1978) Tn951: A new transposon carrying a lactose operon. Mot Gen Genet 160:215–224

    Google Scholar 

  • Débarbouillé M, Martin-Verstraete I, Arnaud M, Klier A, Rapoport G (1991) Positive and negative regulation controlling expression of the sac genes in Bacillus subtilis. Res Microbiol 142:757–764

    Google Scholar 

  • Edwards PR, Ewing WH (1972) Identification of Enterobacteriaceae, 3rd edn. Burgess, Minneapolis

    Google Scholar 

  • Gershanovitch VN, Ilyina TS, Rusina OY, Yourovitskaya NV, Bolshakova TN (1977) Repression of inducible enzyme synthesis in a mutant of Escherichia coli K-12 deleted for the ptsH gene. Mol Gen Genet 153:185–190

    Google Scholar 

  • Gunasekaran P, Karunakaran T, Cami B, Mukundan AG, Preziosi L, Baratti J (1990) Cloning and sequencing of the sacA gene: characterization of a sucrase from Zymomonas mobilis. J Bacteriol 172:6727–6735

    Google Scholar 

  • Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425

    Google Scholar 

  • Kaback HR (1990) Active transport: membrane vesicles, bioenergetics, molecules, and mechanisms. In: Krulwich TA (ed) Bacterial energetics. Academic Press, San Diego pp 151–202

    Google Scholar 

  • Kakimura Y, Unemoto T (1985) Sucrose uptake is driven by the Na+ electrochemical potential in the marine bacterium Vibrio alginolyticus. J Bacteriol 163:1293–1295

    Google Scholar 

  • King SC, Hansen CL, Wilson TH (1991) The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochim Biophys Acta 1062:177–186

    Google Scholar 

  • Klier AF, Rapoport G (1988) Genetics and regulation of carbohydrate catabolism in Bacillus. Annu Rev Microbiol 42:65–95

    Google Scholar 

  • Krawiec S, Riley M (1990) Organization of the bacterial chromosome. Microbiol Rev 54:502–539

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Google Scholar 

  • Lengeler J (1975a) Mutations affecting transport of the hexitols d-mannitol, d-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J. Bacteriol 124:26–38

    Google Scholar 

  • Lengeler J (1975b) Nature and properties of hexitol transport systems in Escherichia coli. J Bacteriol 124:39–47

    Google Scholar 

  • Lengeler J (1979) Streptozotocin, an antibiotic superior to penicillin in the selection of rare bacterial mutations. FEMS Microbiol Lett 5:417–419

    Google Scholar 

  • Lengeler JW (1980) Characterization of mutants of Escherichia coli K-12, selected by resistance to streptozotocin. Mol Gen Genet 179:49–54

    Google Scholar 

  • Lengeler J, Lin ECC (1972) Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J Bacteriol 112:840–848

    Google Scholar 

  • Lengeler J, Bockmann J, Heuel H, Titgemeyer F (1992) The enzymes II of the PTS as carbohydrate transport systems: what the evolutionary studies tell us of their structure and function. In Quagliariello E, Plamieri F. (eds) Molecular mechanisms of transport. Elsevier Scince Publishers, Amsterdam pp 77–85

    Google Scholar 

  • Link CD, Reiner AM (1983) Genotypic exclusion: a novel relationship between ribitol-arabitol and galactitol genes of E. coli. Mol Gen Genet 189:337–339

    Google Scholar 

  • Low B (1973) Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K-12. J Bacteriol 113:798–812

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrock J (1982) Molecular cloning — A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Médigue C, Viari A, Hénant A, Danchin A (1991) Escherichia coli molecular genetic map (1500 bp): update II. Mol Microbiol 5:2629–2640

    Google Scholar 

  • McFall E (1967)Mapping of the d-serine deaminase region in Escherichia coli K-12. Genetics 55:91–99

    Google Scholar 

  • McMorrow I, Chin DT, Fiebig K, Pierce JL, Wilson DM, Reeve ECR, Wilson TH (1988) The lactose carrier of Klebsiella pneumoniae M5a1: the physiology of transport and the nucleotide sequence of the lacY gene. Biochim Biophys Acta 945:315–323

    Google Scholar 

  • Postma PW, Lengeler JW (1985) Phosphoenolpyruvate carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269

    Google Scholar 

  • Reizer J, Saier MH Jr, Deutscher J, Grenier F, Thompson J, Hengstenberg W (1988) The phosphoenolpyruvate sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism, and regulation. CRC Crit Rev Biochem 15:297–338

    Google Scholar 

  • Rosner JL (1972) Formation, induction and curing of bacteriophage P1 lysogenes. Virology 49:679–689

    Google Scholar 

  • Sato Y, Poy F, Jacobson GR, Kuramitsu HK (1989) Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J Bacteriol 171:263–271

    Google Scholar 

  • Schmid K, Schupfner M, Schmitt R (1982)Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J Bacteriol 151:68–76

    Google Scholar 

  • Schmid K, Ebner R, Altenbuchner J, Schmitt R, Lengeler JW (1988) Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Mol Microbiol 2:1–8

    Google Scholar 

  • Schmid K, Ebner R, Jahreis K, Lengeler JW, Titgemeyer F (1991) A sugar-specific porin, ScrY, is involved in sucrose uptake in enteric bacteria. Mol Microbiol 5:941–950

    Google Scholar 

  • Scholle RA, Coyne VE, Maharaj R, Robb FT, Woods DR (1987) Expression and regulation of a Vibrio alginolyticus sucrose utilization system cloned in Escherichia coli. J Bacteriol 169:2685–2690

    Google Scholar 

  • Slee AM, Tanzer JM (1982) Sucrose transport by Streptococcus mutans, evidence for multiple transport systems. Biochim Biophys Acta 692:415–424

    Google Scholar 

  • Sprenger GA, Lengeler JW (1987) Mapping of the sor genes for l-sorbose degradation in the chromosome of Klebsiella pneumoniae. Mol Gen Genet 209:352–359

    Google Scholar 

  • Sprenger GA, Lengeler JW (1988) Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12. J Gen Microbiol 134:1635–1644

    Google Scholar 

  • van Gijsegem F, Toussaint A (1982)Chromosome transfer and R-prime formation by RP4::mini Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. Plasmid 7:30–44

    Google Scholar 

  • van Iwaarden PR, Pastore JC, Konings WN, Kaback HR (1991) Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30:9595–9600

    Google Scholar 

  • von Heijne G (1989) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341:456–458

    Google Scholar 

  • Wilson TH, Yunker PL, Hansen CL (1990) Lactose transport mutants of Escherichia coli resistant to inhibition by the phosphotransferase system. Biochim Biophys Acta 1029:113–116

    Google Scholar 

  • Wirth R, Fiesenegger A, Fiedler S (1989) Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216:175–177

    Google Scholar 

  • Woodward MJ, Charles, HP (1982) Genes for l-sorbose utilization in Escherichia coli. J Gen Microbiol 128:1969–1980

    Google Scholar 

  • Woodward MJ, Charles HP (1983) Polymorphism in Escherichia coli: rtl, atl and gat regions behave as chromosomal alternatives. J Gen Microbiol 129:75–84

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicatd by H. Böhme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockmann, J., Heuel, H. & Lengeler, J.W. Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Molec. Gen. Genet. 235, 22–32 (1992). https://doi.org/10.1007/BF00286177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286177

Key words

Navigation