Skip to main content

Advertisement

Log in

Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals, and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities–contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111(8):800–813

    Article  CAS  Google Scholar 

  • Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Bioref 1:57–66

    Article  CAS  Google Scholar 

  • Amaral PF, Ferreira TF, Fontes GC, Coelho MAZ (2009) Glycerol valorization: new biotechnological routes. Food Bioprod Proc 87:179–186

    Article  CAS  Google Scholar 

  • Anand P, Saxena RK (2011) A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnol 29(2):199–205

    Google Scholar 

  • André A, Chatzifragkou A, Diamantopoulou P, Sarris D, Philippoussis A, Galiotou-Panayotou M, Komaitis M, Papanikolaou S (2009) Biotechnological conversions of bio-diesel derived crude glycerol by Yarrowia lipolytica strains. Eng Life Sci 9:468–478

    Article  CAS  Google Scholar 

  • André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived water glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416

    Article  CAS  Google Scholar 

  • Andreeßen B, Lange AB, Robenek H, Steinbüchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76:622–626

    Article  CAS  Google Scholar 

  • Ashby RD, Solainman DKY, Foglia TA (2004) Bacterial poly (hydrohyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 12:105–112

    Article  CAS  Google Scholar 

  • Ashby RD, Nuñez A, Solaiman DKY, Foglia TA (2005) Sophorolipid biosynthesis from a biodiesel co-production stream. J Am Oil Chem Soc 82:625–630

    Article  CAS  Google Scholar 

  • Ashby RD, Solaiman DKY, Strahan GD (2011) Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers. J Am Oil Chem Soc 88:949–959

    Article  CAS  Google Scholar 

  • Athalye SK, Garcia RA, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744

    Article  CAS  Google Scholar 

  • Barbirato F, Himmi EH, Conte T, Bories A (1998) 1,3-Propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crop Prod 7:281–289

    Article  CAS  Google Scholar 

  • Bell BM, Briggs JR, Campbell RM, Cahmbers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns K, Kenney JM, Kruper WJ, Schreck DJ, Theriault CN, Wolfe CP (2008) Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process. Clean-Soil Air Water 36:657–661

    Article  CAS  Google Scholar 

  • Bellou S, Moustogianni A, Makri A, Aggelis G (2012) Lipids containing polyunsaturated fatty acids synthesized by zygomycetes grown on glycerol. Appl Biochem Biotechnol 166:146–158

    Article  CAS  Google Scholar 

  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  • Carrero A, van Grieken R, Paredes B (2011) Hybrid zeolitic-mesostructured materials as supports of metallocene polymerization catalysts. Catal Today 179:115–122

    Article  CAS  Google Scholar 

  • Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydrobutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515

    Article  CAS  Google Scholar 

  • Cavalheiro JMBT, Raopso RS, de Almeida MCMD, Cesário MT, Sevrin C, Grandfils C, da Fonseca MMR (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using glycerol. Bioresource Technol 111:391–397

    Article  CAS  Google Scholar 

  • Chatzifragkou A, Dietz D, Komaitis M, Zeng AP, Papanikolaou S (2010) Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol Bioeng 107:76–84

    Article  CAS  Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011a) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  • Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki AI, Nychas GJE, Zeng AP (2011b) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91:101–112

    Article  CAS  Google Scholar 

  • Chatzifragkou A, Aggelis G, Komaits M, Zeng AP, Papanikolaou S (2011c) Impact of anaerobiosis strategy and bioreactor geometry on the biochemical response of Clostridium butyricum VPI 1718 during 1,3-propanediol fermentation. Bioresource Technol 102:10625–10632

    Article  CAS  Google Scholar 

  • Chatzifragkou A, Petrou I, Gardeli C, Komaitis M, Papanikolaou S (2011d) Effect of Origanum vulgare L. essential oil on growth and lipid profile of Yarrowia lipolytica cultivated on glycerol-based media. J Am Oil Chem Soc 88:1955–1964

    Article  CAS  Google Scholar 

  • Chee JY, Tan Y, Samian MR, Sudesh K (2010) Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA)from triglycerides, fatty acids and glycerols. J Polym Environ 18:584–592

    Article  CAS  Google Scholar 

  • Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545

    Article  CAS  Google Scholar 

  • Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89:1255–1264

    Article  CAS  Google Scholar 

  • Chouhan APS, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sustain Energy Rev 15:4378–4399

    Article  CAS  Google Scholar 

  • da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  CAS  Google Scholar 

  • Dedyukhina EG, Chistyakova TI, Kamzolova SV, Vinter MV, Vainshtein MB (2012) Arachidonic acid synthesis by glycerol-grown Mortierella alpina. Eur J Lipid Sci Technol. doi:10.1002/ejlt.201100360

  • Demirbas A (2006) Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energ Convers Manag 47:2271–2282

    Article  CAS  Google Scholar 

  • Demirbas A, Kara H (2006) New options for conversion of vegetable oils to alternative fuels. Energy sources part A: recovery, utilization & environmental effects. Taylor & Francis Ltd, pp. 619-626

  • Di Serio M, Tesser R, Pengmei L, Santacesaria E (2007) Heterogeneous catalysts for biodiesel production. Energy Fuel 22:207–217

    Article  CAS  Google Scholar 

  • Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

    Article  CAS  Google Scholar 

  • Forrest AK, Sierra R, Holtzapple MT (2010) Effect of biodiesel glycerol type and fermentor configuration on mixed-acid fermentations. Bioresource Technol 101:9185–9189

    Article  CAS  Google Scholar 

  • Furusawa H, Koyama N (2004) Effect of fatty acids on the membrane potential of an alkaliphilic bacillus. Curr Microbiol 48:196–198

    Article  CAS  Google Scholar 

  • Ghosh D, Tourigny A, Hallenbeck PC (2012) New stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation. Int J Hydrogen Energ 37:2273–2277

    Google Scholar 

  • González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446

    Article  CAS  Google Scholar 

  • González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336

    Google Scholar 

  • Grabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A (2001) Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem 37:64–71

    Google Scholar 

  • Günzel B, Yonsel S, Deckwer WD (1991) Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m2. Appl Microbiol Biotechnol 36:289–294

    Article  Google Scholar 

  • Habe H, Shimada Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Sakaki K (2009) Production of glyceric acid by Gluconobacter sp. NBRC3259 using raw glycerol. Biosci Biotechnol Biochem 73:1799–1805

    Article  CAS  Google Scholar 

  • Hájek M, Skopal F (2010) Treatment of glycerol formed by biodiesel production. Bioresource Technol 101:3232–3245

    Article  CAS  Google Scholar 

  • Hanh HD, Dong NT, Okitsu K, Nishimura R, Maeda Y (2008) Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field. Renew Energy 34:766–768

    Article  CAS  Google Scholar 

  • He H, Wang T, Zhu S (2007) Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86:442–447

    Article  CAS  Google Scholar 

  • Helwani Z, Othman MR, Aziz N, Fernando WJN, Kim J (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Proc Technol 90:1502–1514

    Article  CAS  Google Scholar 

  • Hirschmann S, Baganz K, Koschik I, Vorlop KD (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch Volk 55:261–267

    Google Scholar 

  • Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 53:435–440

    Google Scholar 

  • Huang H, Gong CS, Tsao GT (2002) Production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 98–100:687–698

    Article  Google Scholar 

  • Ibrahim MHA, Steinbüchel A (2010) Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol. J Appl Microbiol 108:214–225

    Article  CAS  Google Scholar 

  • Imandi SB, Bandaru VVR, Somalanka SR, Garapati HR (2007) Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzym Microb Technol 40:1367–1372

    Article  CAS  Google Scholar 

  • Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265

    Article  CAS  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Google Scholar 

  • Kamzolova SV, Fatykhova AR, Dedyukhina EG, Anastassiadis SG, Golovchenko NP, Morgunov IG (2011) Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol Biotechnol 49:65–74

    CAS  Google Scholar 

  • Kodicek E, Worden AN (1945) The effect of unsaturated fatty acids on Lactobacillus helveticus and other Gram-positive micro-organisms. Biochem J 39:78–85

    CAS  Google Scholar 

  • Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereire L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565

    Article  CAS  Google Scholar 

  • Koutinas AA, Wang RH, Webb C (2007) The biochemurgist–bioconversion of agricultural raw materials for chemical production. Biofuels Bioprod Bioref 1:24–38

    Article  CAS  Google Scholar 

  • Kuhnert P, Scholten E, Haefner S, Mayor D, Frey I (2009) Basfia succinicproducens gen. nov., sp. Nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int J Syst Evol Microbiol 60:44–50

    Article  CAS  Google Scholar 

  • Kusdiana D, Saka S (2001) Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80:693–698

    Article  CAS  Google Scholar 

  • Kusdiyantini E, Gaudin P, Goma G, Blanc PJ (1998) Growth kinetics and astaxanthin production of Phaffia rhodozyma on glycerol as a carbon source during batch fermentation. Biotechnol Lett 20:929–934

    Article  CAS  Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095

    Article  CAS  Google Scholar 

  • Liang Y, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol from yellow grease to lipids through yeast fermentation. Bioresource Technol 101:7581–7586

    Article  CAS  Google Scholar 

  • Lin SKC, Du C, Koutinas A, Wang R, Webb C (2008) Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem Eng J 41:128–135

    Article  CAS  Google Scholar 

  • Liu T, Koh CMJ, Ji L (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresource Technol 102:3927–3933

    Article  CAS  Google Scholar 

  • Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energy Environ Sci 1:542–564

    Article  CAS  Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11:1300–1311

    Article  CAS  Google Scholar 

  • Martelli HL, da Silva IM, Souza NO, Pomeroy D (1992) Glycerol as substrate for biomass and β-carotene production by Rhodotorula lactosa. World J Microbiol Biotechnol 8:635–637

    Article  CAS  Google Scholar 

  • Matzouridou F (2009) The potential of raw glycerol in the production of food grade carotenoids by fungi. In: Aggelis G (ed) Microbial conversions of raw glycerol. Nova Science, New York, pp 101–124

    Google Scholar 

  • Mantzouridou F, Naziri E, Tsimidou MZ (2008) Industrial glycerol as a supplementary carbon source in the production of β-carotene by Blakeslea trispora. J Agric Food Chem 56:2668–2675

    Article  CAS  Google Scholar 

  • Mbaraka IK, Shanks BH (2006) Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. JAOCS 83:79–91

    Article  CAS  Google Scholar 

  • Meesters PAEP, Huijberts GNM, Eggink G (1996) High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579

    Article  CAS  Google Scholar 

  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86

    Article  CAS  Google Scholar 

  • Metsoviti M, Paramithiotis S, Drosinos EH, Galiotou-Panayotou M, Nychas GJE, Zeng AP, Papanikolaou S (2012) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 12:57–68

    Article  CAS  Google Scholar 

  • Moon C, Ahn JH, Kim SW, Sang BI, Um Y (2010) Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl Biochem Biotechnol 161:502–510

    Article  CAS  Google Scholar 

  • Morgunov IG, Kamzolova SV, Perevoznikova OA, Shishkanova NV, Finogenova TV (2004) Pyruvic acid production by a thiamine auxotroph of Yarrowia lipolytica. Process Biochem 39(11):1469–1474

    Google Scholar 

  • Moser BR (2011) Biodiesel production, properties, and feedstocks. In: Tomes D, Lakshmanan P, Songstad D (eds) Biofuels. Springer, New York, pp 285–347

    Chapter  Google Scholar 

  • Mothes C, Schnorpfeil C, Ackermann JU (2007) Production of PHB from crude glycerol. Eng Life Sci 7:475–479

    Article  CAS  Google Scholar 

  • Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol biodiesel preparations. Biotechnol Lett 28:1755–1759

    Google Scholar 

  • Musiał I, Rymowicz W (2009) Biodiesel by-products used as substrates for oxalic acid production by Aspergillus niger. In: Aggelis G (ed) Microbial conversions of raw glycerol. Nova Science, New York, pp 31–40

    Google Scholar 

  • Ngo TA, Kim MS, Sim SJ (2011) High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrogen Energy 36:5836–5842

    Article  CAS  Google Scholar 

  • Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:692–700

    Article  CAS  Google Scholar 

  • Pagliaro M, Rossi M (2010) Glycerol: properties and production. In: Pagliaro M, Rossi M (eds) The future of glycerol, 2nd edn. The Royal Society of Chemistry, RCS, UK, pp 1–28

    Chapter  Google Scholar 

  • Papanikolaou S (2009) Microbial conversion of glycerol into 1,3-propanediol: glycerol assimilation, biochemical events related with 1,3-propanediol biosynthesis and biochemical engineering of the process. In: Aggelis G (ed) Microbial conversions of raw glycerol. Nova Science, New York, pp 137–168

    Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technol 82:43–49

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2003) Modeling aspects of the biotechnological valorization of raw glycerol: production of citric acid by Yarrowia lipolytica and 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 78:542–547

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21:83–87

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model organism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: Technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073

    Article  CAS  Google Scholar 

  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208

    Article  CAS  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002a) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92:737–744

    Article  CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002b) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  CAS  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:124–130

    Google Scholar 

  • Papanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79:1189–1196

    Article  CAS  Google Scholar 

  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorization of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71

    Article  CAS  Google Scholar 

  • Petitdemange E, Dürr C, Abbad Andaloussi S, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 15:498–502

    Article  CAS  Google Scholar 

  • Pflugmacher U, Gottschalk G (1994) Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl Microbiol Biotechnol 41:313–316

    Article  CAS  Google Scholar 

  • Posada JA, Rincón LE, Cardona CA (2012) Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem. Bioresource Technol 111:282–293

    Article  CAS  Google Scholar 

  • Pyle D, Garcia R, Wen Z (2008) Producing docosahexanoic acid-rich algae from biodiesel derived-crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939

    Article  CAS  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–44

    Article  CAS  Google Scholar 

  • Razavi SH, Seyed MM, Hassan MY, Marc I (2007) Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. J Microbiol Biotechnol 17:1591–1597

    CAS  Google Scholar 

  • Rehman A, Matsimura M, Nomura N, Sato S (2008) Growth and 1,3-propanediol production on pre-treated sunflower oil bio-diesel raw glycerol using a strict anaerobe-Clostridium butyricum. Curr Res Bacteriol 1:7–16

    Article  Google Scholar 

  • Reimann A, Biebl H, Deckwer WD (1998) Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 49:359–363

    Google Scholar 

  • Rivaldi JD, Sarrouh BF, da Silva SS (2009) Development of biotechnological processes using glycerol from biodiesel production. In: Mendez-Vilas A (ed) Current research topics in applied microbiology and microbial biotechnology. World Scientific, Singapore, pp 429–433

    Google Scholar 

  • Royon D, Daz M, Ellenrieder G, Locatelli S (2006) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technol 98:648–653

    Article  CAS  Google Scholar 

  • Rymowicz W, Rywińska A, Żarowska B, Juszczyk P (2006) Citric acid production by acetate mutants of Yarrowia lipolytica. Chem Pap 60(5):391–394

    Article  CAS  Google Scholar 

  • Rymowicz W, Rywińska A, Gładkowski W (2008) Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chem Pap 62:239–246

    Article  CAS  Google Scholar 

  • Rymowicz W, Fatykhova AR, Kamzolova SV, Rywińska A, Morgunov IG (2010) Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch and cell recycle regimes. Appl Microbiol Biotechnol 87:971–979

    Article  CAS  Google Scholar 

  • Rywińska A, Rymowicz W, Żarowska B, Wojatowitcz M (2009) Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technol Biotechnol 41(1):1–6

    Google Scholar 

  • Sabourin-Provost G, Hallenbeck PC (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresource Technol 100:3513–3517

    Article  CAS  Google Scholar 

  • Saka S, Kusdiana D (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231

    Article  CAS  Google Scholar 

  • Sanchez F, Vasudevan PT (2006) Enzyme catalyzed production of biodiesel from olive oil. Appl Biochem Biotechnol 135:1–14

    Article  CAS  Google Scholar 

  • Sanli H, Canakci M (2008) Effects of different alcohol and catalyst usage on biodiesel production from different vegetable oils. Energy Fuel 22:2713–2719

    Article  CAS  Google Scholar 

  • Scholten E, Dägele D (2008) Succinic acid production by a newly isolated bacterium. Biotechnol Lett 30:2143–2146

    Article  CAS  Google Scholar 

  • Scholten E, Renz T, Thomas J (2009) Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnol Lett 31:1947–1951

    Article  CAS  Google Scholar 

  • Shahid EM, Jamal Y (2011) Production of biodiesel: a technical review. Renew Sustain Energy Rev 15:4732–4745

    Article  CAS  Google Scholar 

  • Sharma YC, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373

    Article  CAS  Google Scholar 

  • Singhabhandhu A, Tezuka T (2010) A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy 35:2493–2504

    Article  CAS  Google Scholar 

  • Tao JL, Wang XD, Shen YL, Wei DZ (2005) Strategy for the improvement of prodigiosin production by a Serratia marcescens mutant through fed-batch fermentation. World J Microbiol Biotechnol 21:969–972

    Article  CAS  Google Scholar 

  • Tashtoush GM, Al-Widyan MI, Al-Jarrah MM (2004) Experimental study on evaluation and optimization of conversion of waste fat into biodiesel. Energy Convers Manag 45:2697–2711

    Article  CAS  Google Scholar 

  • Thompson JC, He BB (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 22:261–265

    Google Scholar 

  • Thompson L, Cockayne A, Spiller RC (1994) Inhibitory effect of polyunsaturated fatty acids on the growth of Helicobacter pylori: a possible explanation of the effect of diet on peptic ulceration. Gut 35:1557–1561

    Google Scholar 

  • Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  CAS  Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production—current state if the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  CAS  Google Scholar 

  • Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothum GD, Scholz C (2012) Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol 93:1325–1335

    Google Scholar 

  • Vincente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technol 92(3):297–305

    Article  CAS  Google Scholar 

  • Vlysidis A, Binns M, Webb C, Theodoropoulos C (2011) Glycerol utilization for the production of chemicals: conversion to succinic acid, a combined experimental and computational study. Biochem Eng J 58–59:1–11

    Article  CAS  Google Scholar 

  • Wen Z, Pyle DJ, Athalye SK (2009) Glycerol waste from biodiesel manufacturing. In: Aggelis G (ed) Microbial conversions of raw glycerol. Nova Science, New York, pp 1–7

    Google Scholar 

  • Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2012) High-level production of 1,3-propanediol form crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93:1057–1063

    Article  CAS  Google Scholar 

  • Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    Article  CAS  Google Scholar 

  • Yin JH, Xiao M, Song JB (2008) Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Convers Manag 49:908–912

    Article  CAS  Google Scholar 

  • Zabeti M, Daud WMAW, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Proc Technol 90:770–777

    Article  CAS  Google Scholar 

  • Zeng AP (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioproc Eng 14:169–175

    Article  CAS  Google Scholar 

  • Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: The case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    Google Scholar 

  • Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: Recent progresses. Curr Opin Biotechnol 22:749–757

    Google Scholar 

  • Zhang Y, Dube MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: process design and technological assessment. Bioresource Technol 89:1–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by: (1) the State Scholarship Foundation (Athens, Greece) and DAAD (project IKYDA “Development of a novel bioconversion process involving a defined microbial community”); (2) the EU (FP7 Program “Propanergy—Integrated bioconversion of glycerine into value-added products and biogas at pilot plant scale”, grant number: 212671); and (3) the project entitled “Bio-refinery development utilizing residues from biodiesel production processes for the production of biodegradable polymers and value-added products” (Acronym “BIOREF”, project number: 715-12/11/2009) funded by GSRT (Greek Ministry of National Education and Religious Affairs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seraphim Papanikolaou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatzifragkou, A., Papanikolaou, S. Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl Microbiol Biotechnol 95, 13–27 (2012). https://doi.org/10.1007/s00253-012-4111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4111-3

Keywords

Navigation