Skip to main content
Log in

Tuning the Expression Level of a Gene Located on a Bacterial Chromosome

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A new method of constructing a set of bacterial cell clones varying in the strength of a promoter upstream of the gene of interest was developed with the use of Escherichia coli MG1655 and lacZ as a reporter. The gist of it lies in constructing a set of DNA fragments with tac-like promoters by means of PCR with the consensus promoter P tac and primers ensuring randomization of the four central nucleotides in the −35 region. DNA fragments containing the tac-like promoters and a selective marker (Cm R) were used to replace lacI and the regulatory region of the lactose operon in E. coli MG1655. Direct LacZ activity assays with independent integrant clones revealed 14 new promoters (out of 44 = 256 possible variants), whose strength varied by two orders of magnitude: LacZ activity in the corresponding strains gradually varied from 102 Miller units with the weakest promoter to 104 Miller units with consensus P tac Sequencing of the modified promoters showed that randomization of three positions in the −35 region is sufficient for generating a representative promoter library, which reduces the number of possible variants from 256 to 64. The method of constructing a set of clones varying in expression of the gene or operon of interest is promising for modern metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bongaerts J., Kramer M., Muller U., Raeven L., Wubbolts M. 2001. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng. 3, 289–300.

    Article  PubMed  CAS  Google Scholar 

  2. Yang Y-T., Bennett G.N., San K-Y. 1998. Genetic and metabolic engineering. EJB Electronic J. Biotechnol. 1, 1–8.

    Google Scholar 

  3. Balbas P., Bolivar F. 1990. In: Methods in Enzymology. Ed. Goeddel D.D. San Diego: Acad. Press, pp. 14–37.

    Google Scholar 

  4. Jones K.L., Kim S-W., Keasling J.D. 2000. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2, 328–338.

    Article  PubMed  CAS  Google Scholar 

  5. Sousa C., Lorenzo F.D., Cebolla A. 1997. Modification of gene expression through chromosomal positioning in Escherichia coli. Microbiology. 143, 2071–2078.

    Article  PubMed  CAS  Google Scholar 

  6. Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science. 277, 1453–1474.

    Article  PubMed  CAS  Google Scholar 

  7. Datsenko K.A., Wanner B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  8. Mashko S.V., Katashkina J.I., Skorokhodova A.Yu., Zimenkov D.V., Benevolenskii M.S., Biryukova I.V., Debabov V.G. 2001. New “strong” and effectively regulated prokaryotic promoters constructed by introducing perfectly symmetrical I lac-ideal as an additional operator into the P trp -P lacUV5/I lac hybrid regulatory elements. Biotekhnologiya. 5, 3–20.

    Google Scholar 

  9. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press.

    Google Scholar 

  10. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580.

    PubMed  CAS  Google Scholar 

  11. Sanger F., Nicklen S., Coulson A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463–5467.

    PubMed  CAS  Google Scholar 

  12. Miller J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press.

    Google Scholar 

  13. Busby S., Ebright R.H. 1994. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell. 79, 743–746.

    Article  PubMed  CAS  Google Scholar 

  14. DeHaseth P.L., Zupancic M.L., Record M.T. 1998. RNA polymerase-promoter interactions: The comings and goings of RNA polymerase. J. Bacteriol. 180, 3019–3025.

    PubMed  CAS  Google Scholar 

  15. Amann E., Brosius J., Ptashne M. 1983. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene. 25, 167–178.

    Article  PubMed  CAS  Google Scholar 

  16. De Boer H.A., Comstock L.J., Vasser M. 1983. The tac promoter: A functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA. 80, 21–25.

    PubMed  Google Scholar 

  17. Russell D.R., Bennett G.N. 1982. Construction and analysis of in vivo activity of E. coli promoter hybrids and promoter mutants that alter the −35 to −10 spacing. Gene. 20, 231–243.

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi M., Nagata K., Ishihama A. 1990. Promoter selectivity of Escherichia coli RNA polymerase: Effect of base substitutions in the promoter −35 region on promoter strength. Nucleic Acids Res. 18, 7367–7372.

    PubMed  CAS  Google Scholar 

  19. Szoke P.A., Allen T.L., DeHaseth P.L. 1987. Promoter recognition by Escherichia coli RNA polymerase: Effects of base substitutions in the −10 and −35 regions. Biochemistry. 26, 6188–6194.

    Article  PubMed  CAS  Google Scholar 

  20. Liu M., Tolstorukov M., Zhurkin V., Garges S., Adhya S. 2004. A mutant spacer sequence between −35 and −10 elements makes the P lac promoter hyperactive and cAMP receptor protein-independent. Proc. Natl. Acad. Sci. USA. 101, 6911–6916.

    PubMed  CAS  Google Scholar 

  21. Jensen P.R., Hammer K. 1998. Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58, 191–195.

    Article  PubMed  CAS  Google Scholar 

  22. Makrides S.C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512–538.

    PubMed  CAS  Google Scholar 

  23. Mashko S.V. 1998. Optimization of foreign gene expression in E. coli cells. Biotekhnologiya. 6, 3–23.

    Google Scholar 

  24. Peredelchuk M.Y., Bennett G.N. 1997. A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene. 187, 231–238.

    Article  PubMed  CAS  Google Scholar 

  25. Katashkina J.I., Lunts M.G., Doroshenko V.G., Folima S.A., Skorokhodova A.Yu., Ivanovskaya L.V., Mashko S.V. 2003. RF Patent Application no. 2003106551, priority date March 12, 2003.

  26. Olins P.O., Devine C.S., Rangwala S.H., Kavka.S. 1988. The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene. 73, 227–235.

    Article  PubMed  CAS  Google Scholar 

  27. Olins P.O., Rangwala S.H. 1989. A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J. Biol. Chem. 264, 16973–16976.

    PubMed  CAS  Google Scholar 

  28. Clark A.J., Sandler S.J. 1994. Homologous genetic recombination: The pieces begin to fall into place. Crit. Rev. Microbiol. 20, 125–142.

    PubMed  CAS  Google Scholar 

  29. Cosloy S.D., Oishi M. 1973. Genetic transformation in Escherichia coli K12. Proc. Natl. Acad. Sci. USA. 70, 84–87.

    PubMed  CAS  Google Scholar 

  30. Mochul'skaya N.A., Mironov A.S., Mashko S.V. 1994. Decrease in the level of DaiR-dependent deo operon repression upon integration of foreign DNA fragments into the deoO 1-deoO 2 region of the Escherichia coli chromosome. Genetika (Moscow). 30, 1175–1183.

    Google Scholar 

  31. El Karoui M., Amundsen S.K., Dabert P., Gruss A. 1999. Gene replacement with linear DNA in electroporated wild-type Escherichia coli. Nucleic Acids Res. 27, 1296–1299.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 5, 2005, pp. 823–831.

Original Russian Text Copyright © 2005 by Katashkina, Skorokhodova, Zimenkov, Gulevich, Minaeva, Doroshenko, Biryukova, Mashko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katashkina, J.I., Skorokhodova, A.Y., Zimenkov, D.V. et al. Tuning the Expression Level of a Gene Located on a Bacterial Chromosome. Mol Biol 39, 719–726 (2005). https://doi.org/10.1007/s11008-005-0087-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0087-8

Key words

Navigation