Skip to main content
Log in

The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A Pseudomonas putida S12 strain was constructed that efficiently produced the fine chemical cinnamic acid from glucose or glycerol via the central metabolite phenylalanine. The gene encoding phenylalanine ammonia lyase from the yeast Rhodosporidium toruloides was introduced. Phenylalanine availability was the main bottleneck in cinnamic acid production, which could not be overcome by the overexpressing enzymes of the phenylalanine biosynthesis pathway. A successful approach in abolishing this limitation was the generation of a bank of random mutants and selection on the toxic phenylalanine anti-metabolite m-fluoro-phenylalanine. Following high-throughput screening, a mutant strain was obtained that, under optimised culture conditions, accumulated over 5 mM of cinnamic acid with a yield (Cmol%) of 6.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adelberg EA, Mandel M, Chen CC (1965) Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli. Biochem Biophys Res Commun 18:788–795

    CAS  Google Scholar 

  • Anson JG, Gilbert HJ, Oram JD, Minton NP (1987) Complete nucleotide sequence of the Rhodosporidium toruloides gene coding for phenylalanine ammonia-lyase. Gene 58:189–199

    CAS  PubMed  Google Scholar 

  • Arias-Barrau E, Olivera ER, Luengo JM, Fernandez C, Galan B, Garcia JL, Diaz E, Minambres B (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of l-phenylalanine, l-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186(15):5062–5077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Backman K, O’Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, DiPasquantonio V, Shoda D, Hatch R et al (1990) Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann NY Acad Sci 589:16–24

    CAS  PubMed  Google Scholar 

  • Benkrief R, Ranarivelo Y, Skaltsounis A, Tillequin F, Koch M, Pusset J, Sevenet T (1998) Monoterpene alkaloids, iridois and phenylpropanoid glycosides from Osmanthus austrocaledonica. Phytochemistry 47(5):825–832

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253

    CAS  PubMed  Google Scholar 

  • Byng GS, Whitaker RJ, Jensen RA (1983) Evolution of l-phenylalanine biosynthesis in rRNA homology group I of Pseudomonas. Arch Microbiol 136(3):163–168

    CAS  PubMed  Google Scholar 

  • Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T (2004) Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry 43(36):11403–11416

    CAS  PubMed  Google Scholar 

  • De Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16:493–499

    Google Scholar 

  • Dopheide TA, Crewther P, Davidson BE (1972) Chorismate mutase-prephenate dehydratase from Escherichia coli K-12. II. Kinetic properties. J Biol Chem 247(14):4447–4452

    CAS  PubMed  Google Scholar 

  • El-Batal AI (2002) Continuous production of l-phenylalanine by Rhodotorula glutinis immobilized cells using a column reactor. Acta Microbiol Pol 51(2):153–169

    CAS  PubMed  Google Scholar 

  • Faulkner JDB, Anson JG, Tuite MF, Minton NP (1994) High-level expression of the phenylalanine ammonia lyase-encoding gene from Rhodosporidium toruloides in Saccharomyces cerevisiae and Escherichia coli using a bifunctional expression system. Gene 143:13–20

    CAS  PubMed  Google Scholar 

  • Fiske MJ, Whitaker RJ, Jensen RA (1983) Hidden overflow pathway to L-phenylalanine in Pseudomonas aeruginosa. J Bacteriol 154(2):623–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz RR, Hodgins DS, Abell CW (1976) Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. J Biol Chem 251:4646–4650

    CAS  PubMed  Google Scholar 

  • Frost JW, Draths KM (1995) Biocatalytic syntheses of aromatics from d-glucose: renewable microbial sources of aromatic compounds. Annu Rev Microbiol 49:557–579

    CAS  PubMed  Google Scholar 

  • Gibson F, Pittard J (1968) Pathways of biosynthesis of aromatic amino acids and vitamins and their control in microorganisms. Bacteriol Rev 32(4 Pt 2):465–492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson KR, Havir EA (1972) The enzymatic elimination of ammonia. In: Boyer P (ed) The enzymes. Academic, New York, pp 75–167

    Google Scholar 

  • Hanson KR, Havir EA (1981) Phenylalanine ammonia-lyase. In: Stumpf PK, Conn EE (eds) The biochemistry of plants. A comprehensive treatise. Academic, New York, pp 577–625

    Google Scholar 

  • Hartmans S, Smits J, van der Werf M, Volkering F, de Bont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmans S, van der Werf MJ, de Bont JA (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol 56(5):1347–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgins DS (1971) Yeast phenylalanine ammonia-lyase; purification, properties, and the identification of catalytically essential dehydroalanine. J Biol Chem 246(9):2977–2985

    CAS  PubMed  Google Scholar 

  • Hoskins JA (1984) The occurrence, metabolism and toxicity of cinnamic acid and related compounds. J Appl Toxicol 4(6):283–292

    CAS  PubMed  Google Scholar 

  • Hüsken LE, Beeftink R, de Bont JA, Wery J (2001) High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol 55(5):557–571

    Google Scholar 

  • Isken S, de Bont JA (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178(20):6056–6058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez JI, Minambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4(12):824–841

    CAS  PubMed  Google Scholar 

  • Kieboom J, Dennis JJ, de Bont JA, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273(1):85–91

    CAS  PubMed  Google Scholar 

  • Lee J, Lee SY, Park S, Middelberg AP (1999) Control of fed-batch fermentations. Biotechnol Adv 17(1):29–48

    CAS  PubMed  Google Scholar 

  • Lessie TG (1984) Alternative pathways of carbohydrate utilization in Pseudomonads. Annu Rev Microbiol 38:359–387

    CAS  PubMed  Google Scholar 

  • Miyamoto K, Sasaki M, Minamisawa Y, Kurahashi Y, Kano H, Ishikawa S (2004) Evaluation of in vivo biocompatibility and biodegradation of photocrosslinked hyaluronate hydrogels (HADgels). J Biomed Mater Res 70A(4):550–559

    CAS  Google Scholar 

  • Ogino T, Garner C, Markley JL, Herrmann KM (1982) Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci U S A 79(19):5828–5832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orndorff SA, Costantino N, Stewart D, Durham DR (1988) Strain improvement of Rhodotorula graminis for production of a novel l-phenylalanine ammonia-lyase. Appl Environ Microbiol 54(4):996–1002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ørum H, Rasmussen OF (1992) Expression in E. coli of the gene encoding phenylalanine ammonia-lyase from Rhodosporidium toruloides. Appl Microbiol Biotechnol 36:745–748

    PubMed  Google Scholar 

  • Parales RE, Bruce NC, Schmid A, Wackett LP (2002) Minireview: biodegradation, biotransformation, and biocatalysis (B3). Appl Environ Microbiol 4699–4709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Pierson DL, Jensen RA (1977) Dual enzymatic routes to l-tyrosine and l-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem 252(16):5839–5846

    CAS  PubMed  Google Scholar 

  • Pine MJ (1978) Comparative physiological effects of incorporated amino acid analogs in Escherichia coli. Antimicrob Agents Chemother 13(4):676–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polen T, Kramer M, Bongaerts J, Wubbolts M, Wendisch VF (2005) The global gene expression response of Escherichia coli to l-phenylalanine. J Biotechnol 115(3):221–237

    CAS  PubMed  Google Scholar 

  • Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183(13):3967–3973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Maniatis T, Fritsch EF (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sarkissian CN, Shao Z, Blain F, Peevers R, Su H, Heft R, Chang TMS, Scriver CR (1999) A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci U S A 96:2339–2344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    CAS  PubMed  Google Scholar 

  • Wery J, de Bont JAM (2004) Solvent-tolerance of Pseudomonads: a new degree of freedom in biocatalysis, Chap 20. In: Ramos JL (ed) The pseudomonads. III. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Wery J, Hidayat B, Kieboom J, de Bont JA (2001) An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem 276(8):5700–5706

    CAS  PubMed  Google Scholar 

  • Whitaker RJ, Fiske MJ, Jensen RA (1982) Pseudomonas aeruginosa possesses two novel regulatory isozymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. J Biol Chem 257(21):12789–12794

    CAS  PubMed  Google Scholar 

  • Xiang L, Moore BS (2002) Inactivation, complementation and heterologous expression of encP, a novel bacterial phenylalanine ammonia-lyase gene. J Biol Chem 277(36):32505–32509

    CAS  PubMed  Google Scholar 

  • Yamada S, Nabe K, Izuo N, Nakamichi K, Chibata I (1981) Production of l-phenylalanine from trans-cinnamic acid with Rhodotorula glutinis containing l-phenylalanine ammonia-lyase activity. Appl Environ Microbiol 42 (5): 773–778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Pohnert G, Kongsaeree P, Wilson DB, Clardy J, Ganem B (1998) Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. J Biol Chem 273(11):6248–6253

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Nijkamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nijkamp, K., van Luijk, N., de Bont, J.A.M. et al. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol 69, 170–177 (2005). https://doi.org/10.1007/s00253-005-1973-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1973-7

Keywords

Navigation