Skip to main content
Log in

From scratch to value: engineering Escherichia coli wild type cells to the production of l-phenylalanine and other fine chemicals derived from chorismate

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant strains of Escherichia coli K-12 for the production of the three aromatic amino acids (l-phenylalanine, l-tryptophan, l-tyrosine) have been constructed. The largest demand is for l-phenylalanine (l-Phe), as it can be used as a building block for the low-calorie sweetener, aspartame. Besides l-Phe, an increasing number of shikimic acid pathway intermediates can be produced from appropriate E. coli mutants with blocks in this pathway. The last common intermediate, chorismate, in E. coli not only serves for production of aromatic amino acids but can also be used for high-titer production of non-aromatic compounds, e.g., cyclohexadiene-transdiols. In an approach to diversity-oriented metabolic engineering (metabolic grafting), platform strains with increased flux through the general aromatic pathway were created by suitable gene deletions, additions, or rearrangements. Examples for rational strain constructions for l-phenylalanine and chorismate derivatives are given with emphasis on genetic engineering. As a result, l-phenylalanine producers are available, which were derived through several defined steps from E. coli K-12 wild type. These mutant strains showed l-phenylalanine titers of up to 38 g/l of l-phenylalanine (and up to 45.5 g/l using in situ product recovery). Likewise, two cyclohexadiene-transdiols could be recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ager DJ, Pantaleone DP, Henderson SA, Katritzky AR, Prakash I, Walters DE (1998) Synthetische nichtnutritive Süßstoffe. Angew Chem 110:1900–1916

    Article  Google Scholar 

  • Ajinomoto (2006) Feed-use amino acids business. http://www.ajinomoto.com/mx_03/ar/i_r/pdf/presentation/FY2005data.pdf

  • Assema F van, Gunsior M, Müller U, Sonke T, Townsend C (2000) Fermentative production of d-p-hydroxyphenylglycine and d-phenylglycine. WO99/34921

  • Backman K, O’Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, DiPasquantonio V, Shoda D, Hatch R, Venkatasubramanian K (1990) Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann NY Acad Sci 589:16–24

    Article  CAS  PubMed  Google Scholar 

  • Baez-Viveros JL, Osuna J, Hernandez-Chavez G, Soberon X, Bolivar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of l-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87:516–524

    Article  CAS  PubMed  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Bentley R (1990) The shikimate pathway—a metabolic tree with many branches. CRC Crit Rev Biochem Mol Biol 2:307–384

    Article  Google Scholar 

  • Berry A (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256

    Article  CAS  PubMed  Google Scholar 

  • Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Bongaerts JJ, Raeven LJRM, Sprenger G, Kuhm A, Takors R, Bujnicki RP (2006) Improved biosynthetic production of [5S,6S]-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylic acid (2,3-trans-CHD). WO 2006/133898

  • Boyd DR, Sharma ND, Llamas NM, O’Dowd CR, Allen CCR (2006) Chemoenzymatic synthesis of the trans-dihydrodiol isomers of monosubstituted benzenes via anti-benzene dioxides. Org Biomol Chem 4:2208–2217

    Article  CAS  PubMed  Google Scholar 

  • Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Hatzimanikatis V, Yap WM, Postma PW, Bailey JE (1997) Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli. Biotechnol Prog 13:768–775

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Boer L, Dijkhuizen L (1990) Microbial and enzymatic processes for l-phenylalanine production. Adv Biochem Eng Biotechnol 41:1–27

    Google Scholar 

  • Dell KA, Frost JW (1993) Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. J Am Chem Soc 115:11581–11589

    Article  CAS  Google Scholar 

  • Dosselaere F, Vanderleyden J (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27:75–131

    Article  CAS  PubMed  Google Scholar 

  • Draths KM, Ward TL, Frost JW (1992) Biocatalysis and nineteenth century organic chemistry: conversion of d-glucose into quinoid organics J Am Chem Soc 114:9725–9726

    Article  CAS  Google Scholar 

  • Eggeling L, Sahm H (1999) Amino acid production: principles of metabolic engineering. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering Marcel Dekker, New York, pp 153–176

    Google Scholar 

  • Eggeling L, Pfefferle W, Sahm H (2006) Amino acids. In: Ratledge C, Kristiansen B (eds) Basic biotechnology, chap. 14, 3rd edn. Cambridge Univ. Press, Cambridge, UK, pp 335–357

    Chapter  Google Scholar 

  • Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623

    Article  CAS  PubMed  Google Scholar 

  • Foerberg C, Haeggstroem L (1988) Phenylalanine production from a rec Escherichia coli strain in fed-batch culture. J Biotechnol 8:291–300

    Article  CAS  Google Scholar 

  • Franke D, Sprenger GA, Müller M (2001) Synthese funktionalisierter Cyclohexadien-trans-diole durch rekombinante Escherichia-coli-Zellen. Angew Chem 113:578–581

    Article  Google Scholar 

  • Franke D, Sprenger GA, Müller M (2003a) Easy access to (R,R)-3,4-dihydroxy-3,4-dihydrobenzoic acid with engineered strain of Escherichia coli. ChemBioChem 4:775–777

    Article  CAS  PubMed  Google Scholar 

  • Franke D, Lorbach V, Esser S, Dose C, Sprenger GA, Halfar M, Thömmes J, Müller R, Takors R, Müller M (2003b) (S,S)-2,3-Dihydroxy-2,3-dihydrobenzoic Acid: access with engineered cells of Escherichia coli and application as starting material in natural product synthesis. Chem Eur J 9:4188–4196

    Article  CAS  PubMed  Google Scholar 

  • Frost JW, Draths KM (1995) Biocatalytic syntheses of aromatics from d-glucose: renewable microbial sources of aromatic compounds. Annu Rev Microbiol 49:557–579

    Article  CAS  PubMed  Google Scholar 

  • Frost JW, Knowles JR (1984) 3-Deoxy-d-arabino-heptulosonic acid 7-phosphate: chemical synthesis and isolation from Escherichia coli auxotrophs. Biochemistry 23:4465–4469

    Article  CAS  PubMed  Google Scholar 

  • Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka E (1986) Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48:119–131

    Article  PubMed  Google Scholar 

  • Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R (2002a) Process control for enhanced l-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng 80:746–754

    Article  CAS  PubMed  Google Scholar 

  • Gerigk M, Maass D, Kreutzer A, Sprenger G, Bongaerts J, Wubbolts M, Takors R (2002b) Enhanced pilot-scale fed-batch l-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst Eng 25:43–52

    Article  CAS  PubMed  Google Scholar 

  • Gibson MI, Gibson F, Doy CH, Morgan P (1962) The branch point in the biosynthesis of the aromatic amino-acids. Nature (London) 195:1173–1175

    Article  CAS  Google Scholar 

  • Gosset G, Yong-Xiao J, Berry A (1996) A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. J Ind Microbiol 17:47–52

    Article  CAS  PubMed  Google Scholar 

  • Grinter N (1998) Developing an l-phenylalanine process. Chemtech 28:33–37

    CAS  Google Scholar 

  • Haslam E (1993) Shikimic acid metabolism and metabolites. Wiley, Chichester, UK

    Google Scholar 

  • Hayashi M, Mizoguchi H, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S-I, Ikeda M (2006) A leuC mutation leading to increased l-lysine production and rel-independent global expression changes in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:783–789

    Article  CAS  PubMed  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  CAS  PubMed  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M (2003) Amino acid production processes. In: Faurie R, Thommel J (eds) Microbial production of l-amino acids. Advances in biochemical engineering/biotechnology, vol 79. Springer, Berlin Heidelberg New York, pp 1–35

    Google Scholar 

  • Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626

    Article  CAS  PubMed  Google Scholar 

  • Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Liden G (2005) Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 92:541–552

    Article  CAS  PubMed  Google Scholar 

  • Jossek R, Bongaerts J, Sprenger GA (2001) Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of Escherichia coli. FEMS Microbiol Lett 202:145–148

    CAS  PubMed  Google Scholar 

  • Kikuchi Y, Tsujimoto K, Kurahashi O (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol 63:761–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehn SJ, Evans TM, Nelson RA, Taylor PP (1994) Methods for increasing carbon conversion efficiency in microorganisms. WO 94/28154.

  • Konstantinov KB, Nishio N, Seki T, Yoshida T (1991) Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production. J Ferment Bioeng 71:350–355

    Article  CAS  Google Scholar 

  • Kozak S (2006) Mikrobielle Biosynthese von (3S,4R)-4-Amino-3-hydroxycyclohexa-1,5-diencarbonsäure mit rekombinanten Escherichia coli-Zellen: Molekulargenetische und biochemische Untersuchungen. Ph.D. thesis, Universität Stuttgart

  • Krämer M, Karutz M, Sprenger G, Sahm H (1999) Microbial preparation of substances from aromatic metabolism/ III. WO 99/55877

  • Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283

    Article  CAS  PubMed  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  PubMed  Google Scholar 

  • Liao JC, Hou SY, Chao YP (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng 52:129–140

    Article  CAS  PubMed  Google Scholar 

  • Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorbach V, Franke D, Nieger M, Müller M (2002) Cyclohexadiene-trans-diols as versatile starting material in natural product synthesis: short and efficient synthesis of iso-crotepoxide and ent-senepoxide. Chem Commun 5:494–495

    Article  CAS  Google Scholar 

  • Lorbach V, Franke D, Eßer S, Dose C, Sprenger GA, Müller M (2004) Microbially produced functionalized cyclohexadiene-trans-diols as a new class of chiral building blocks in organic synthesis: on the way to green and combinatorial chemistry. In: Schmuck C, Wennemers H (eds) Highlights in bioorganic chemistry: methods and applications, Wiley-VCH, Weinheim, pp 511–523

    Chapter  Google Scholar 

  • Lu JL, Liao JC (1997) Metabolic engineering and control analysis for production of aromatics: role of transaldolase. Biotechnol Bioeng 53:132–138

    Article  CAS  PubMed  Google Scholar 

  • McCandliss RJ, Poling MD, Herrmann KM (1978) 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase. Purification and molecular characterization of the phenylalanine-sensitive isoenzyme from Escherichia coli. J Biol Chem 253:4259–4265

    CAS  PubMed  Google Scholar 

  • Miller JE, Backman KC, O’Connor MJ, Hatch RT (1987) Production of phenylalanine and organic acids by phosphoenolpyruvate carboxylase-deficient mutants of Escherichia coli. J Ind Microbiol 2:143–149

    Article  CAS  Google Scholar 

  • Müller R, Breuer M, Wagener A, Schmidt K, Leistner E (1996) Bacterial production of transdihydroxycyclohexadiene carboxylates by metabolic pathway engineering. Microbiology 142:1005–1012

    Article  PubMed  Google Scholar 

  • Müller U, van Assema F, Gunsior M, Orf S, Kremer S, Schipper D, Wagemans An, Townsend CA, Sonke T, Bovenberg R, Wubbolts M (2006) Metabolic engineering of the E. colil-phenylalanine pathway for the production of d-phenylglycine (d-Phg). Metab Eng 8:196–208

    Article  CAS  PubMed  Google Scholar 

  • Nelms J, Gonzalez DH, Yoshida T, Fotheringham I (1992) Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase. Appl Environ Microbiol 58:2592–2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogino T, Garner C, Markley JL, Herrmann KM (1982) Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci USA 79:5828–5832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633

    Article  CAS  PubMed  Google Scholar 

  • Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Mol Microbiol 15:795–802

    Article  CAS  PubMed  Google Scholar 

  • Patnaik R, Liao JC (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patnaik R, Spitzer R, Liao JC (1995) Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. Biotechnol Bioeng 46:361–370

    Article  CAS  PubMed  Google Scholar 

  • Pittard J (1996) Biosynthesis of the aromatic amino acids. p.458-484. In: Neidhardt FC et al (eds) Escherichia coli and Salmonella. Cellular and molecular biology, vol. 1. ASM Press, Washington, DC

    Google Scholar 

  • Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF (2005) The global gene expression response of Escherichia coli to l-phenylalanine. J Biotechnol 115:221–237

    Article  CAS  PubMed  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieping M, Hermann T (2007) l-Threonine. Amino acid biosynthesis—pathways, regulation and metabolic engineering (Wendisch VF, ed). In: Steinbüchel A (ed) Microbiology monographs. Springer Berlin (in press). DOI https://doi.org/10.1007/7171_2006_065

  • Rüffer N (2004) Fermentative Produktion von l-Phenylalanin mit Escherichia coli und integrierter Produktabtrennung. Ber. Forschungszentrum Jülich 4145

  • Rüffer N, Heidersdorf U, Kretzers I, Sprenger GA, Raeven L, Takors R (2004) Fully integrated l-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng 26:239–248

    Article  CAS  PubMed  Google Scholar 

  • Sahm H, Zähner H (1971) Metabolic products of microorganisms. 90. Studies on formation of tryptophan by Escherichia coli K-12. Arch Mikrobiol 76:223–251

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  • Snell KD, Draths KM, Frost JW (1996) Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals. J Am Chem Soc 116:5605–5614

    Article  Google Scholar 

  • Snoep JL, Arfman N, Yomano LP, Fliege RK, Conway T, Ingram LO (1994) Reconstruction of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase. J Bacteriol 176:2133–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger GA (2007) Aromatic amino acids. Amino acid biosynthesis—pathways, regulation and metabolic engineering (VF Wendisch, ed). In: Steinbüchel A (ed) Microbiology monographs. Springer, Berlin (in press). DOI https://doi.org/10.1007/7171_2006_067

  • Sprenger GA and team of CHORUS (2006) Production of new trans-diols and aminocyclitols on the basis of glucose via the chorismate pathway in Escherichia coli cells. Oral presentation, GIM 2006 Meeting, Prague, CZ, 27 June 2006

  • Sprenger G, Siewe R, Sahm H, Karutz M, Sonke T (1998a) Microbial preparation of substances from aromatic metabolism/I. WO 98/18936

  • Sprenger G, Siewe R, Sahm H, Karutz M, Sonke T (1998b) Microbial preparation of substances from aromatic metabolism/ II. WO 98/18937

  • Sugimoto S, Yabuta M, Kato N, Seki T, Yoshida T, Taguchi H (1987) Hyperproduction of phenylalanine by Escherichia coli: application of a temperature-controllable expression vector carrying the repressor-promoter system of bacteriophage lambda. J Biotechnol 5:237–253

    Article  CAS  Google Scholar 

  • Takagi M, Nishio Y, Oh G, Yoshida T (1996) Control of l-phenylalanine production by dual feeding of glucose and l-tyrosine. Biotechnol Bioeng 52:653–660

    Article  CAS  PubMed  Google Scholar 

  • Wahl A, El Massaoudi M, Schipper D, Wiechert W, Takors R (2004) Serial 13C-based flux analysis of an l-phenylalanine-producing E. coli strain using the sensor reactor. Biotechnol Prog 20:706–714

    Article  CAS  PubMed  Google Scholar 

  • Weisser P, Krämer R, Sahm H, Sprenger GA (1995) Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 177:351–354

    Article  Google Scholar 

  • Wendisch VF (ed) (2007) Aromatic amino acids. In: Steinbüchel A (eds) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Microbiology Monographs. Springer, Berlin (in press). DOI https://doi.org/10.1007/7171_2006

  • Yi J, Li K, Draths KM, Frost JW (2002) Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol Prog 18:1141–1148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Hermann Sahm, Institute of Biotechnology (IBT), Research Center Jülich, Germany, for support of his work at Jülich (1987–2003). I also want to thank Prof. Christian Wandrey who contributed to build up stimulating and fruitful collaborations of microbial geneticists, metabolic, and bioprocess engineers at this unique location. The major part of the work at Jülich was performed in research projects FAME and CHORUS in a close collaboration of Research Center Jülich and DSM Biotech GmbH Jülich and was funded by the German Federal Ministry of Education and Research (grant numbers 0311644 and 0312688). My special thanks are to Ursula Degner and Regine Halbach for expert technical assistance. I want to express my sincere gratitude to my colleagues Marcel Wubbolts, Roel Bovenberg, Leon Raeven (all of DSM Biotech), and to Johannes Bongaerts (both IBT and DSM Biotech), Marco Oldiges, Ralf Takors, and Michael Müller (to name only a few of many co-workers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg A. Sprenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprenger, G.A. From scratch to value: engineering Escherichia coli wild type cells to the production of l-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75, 739–749 (2007). https://doi.org/10.1007/s00253-007-0931-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0931-y

Keywords

Navigation