Skip to main content
Log in

Channeling Effect and Tissue Morphology in a Perfusion Bioreactor Imaged by X-Ray Microtomography

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Perfusion bioreactors for tissue engineering hold great promises. Indeed, the perfusion of culture medium enhances species transport and mechanically stimulates the cells, thereby increasing cell proliferation and tissue formation. Nonetheless, their development is still hampered by a lack of understanding of the relationship between mechanical cues and tissue growth.

Methods:

Combining tissue engineering, three-dimensional visualization and numerical simulations, we analyze the morphological evolution of neo-tissue in a model bioreactor with respect to the local flow pattern. NIH-3T3 cells were grown under perfusion for one, two and three weeks on a stack of 2 mm polyacetal beads. The model bioreactor was then imaged by X-ray micro-tomography and local tissue morphology was analyzed. To relate experimental observations and mechanical stimulii, a computational fluid dynamics model of flow around spheres in a canal was developed and solved using the finite element method.

Results:

We observe a preferential tissue formation at the bioreactor periphery, and relate it to a channeling effect leading to regions of higher flow intensity. Additionally, we find that circular crater-like tissue patterns form in narrow channel regions at early culture times. Using computational fluid dynamic simulations, we show that the location and morphology of these patterns match those of shear stress maxima. Finally, the morphology of the tissue is qualitatively described as the tissue grows and reorganizes itself.

Conclusion:

Altogether, our study points out the key role of local flow conditions on the tissue morphology developed on a stack of beads in perfusion bioreactors and provides new insights for effective design of hydrodynamic bioreactors for tissue engineering using bead packings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vunjak-Novakovic G, Freed LE, Biron RJ, Langer R. Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J. 1996;42:850–60.

    Article  CAS  Google Scholar 

  2. Granet C, Laroche N, Vico L, Alexandre C, Lafage-Proust MH. Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3d conditions. Med Biol Eng Comput. 1998;36:513–9.

    Article  CAS  PubMed  Google Scholar 

  3. David B, Bonnefont-Rousselot D, Oudina K, Degat MC, Deschepper M, Viateau V, et al. A perfusion bioreactor for engineering bone constructs: an in vitro and in vivo study. Tissue Eng Part C Methods. 2011;17:505–16.

    Article  PubMed  Google Scholar 

  4. Yeatts AB, Fisher JP. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng Part C Methods. 2011;17:337–48.

    Article  CAS  PubMed  Google Scholar 

  5. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, et al. Fluid flow increases mineralized matrix deposition in 3d perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci U S A. 2002;99:12600–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yeatts AB, Fisher JP. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone. 2011;48:171–81.

    Article  CAS  PubMed  Google Scholar 

  7. Grayson WL, Fröhlich M, Yeager K, Bhumiratana S, Chan ME, Cannizzaro C, et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci U S A. 2010;107:3299–304.

    Article  CAS  PubMed  Google Scholar 

  8. Grayson WL, Marolt D, Bhumiratana S, Fröhlich M, Guo XE, Vunjak-Novakovic G. Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnol Bioeng. 2011;108:1159–70.

    Article  CAS  PubMed  Google Scholar 

  9. Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 2015;16:5517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robeson MJ. Model of a tubular perfusion bioreactor using computational fluid dynamics. [Electron Theses Dissertation], Louisville, USA: University of Louisville; 2015.

  11. Sanaei P, Cummings LJ, Waters SL, Griffiths IM. Curvature-and fluid-stress-driven tissue growth in a tissue-engineering scaffold pore. Biomech Model Mechanobiol. 2019;18:589–605.

    Article  CAS  PubMed  Google Scholar 

  12. Glowacki J, Mizuno S, Greenberger JS. Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture. Cell Transplant. 1998;7:319–26.

    Article  CAS  PubMed  Google Scholar 

  13. Scaglione S, Wendt D, Miggino S, Papadimitropoulos A, Fato M, Quarto R, et al. Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2d model system. J Biomed Mater Res A. 2018;86:411–9.

    Google Scholar 

  14. Scheper T, Faurie R, Thommel J. Advances in biochemical engineering/biotechnology, vol. 109. Berlin: Springer; 2007.

  15. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004;22:80–6.

    Article  CAS  PubMed  Google Scholar 

  16. Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Dev Cell. 2006;10:11–20.

    Article  CAS  PubMed  Google Scholar 

  17. Ladoux B, Nicolas A. Physically based principles of cell adhesion mechanosensitivity in tissues. Rep Prog Phys. 2012;75:116601.

    Article  PubMed  CAS  Google Scholar 

  18. Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J Cell Physiol. 1990;143:100–4.

    Article  CAS  PubMed  Google Scholar 

  19. Katsumi A, Orr AW, Tzima E, Schwartz MA. Integrins in mechanotransduction. J Biol Chem. 2004;279:12001–4.

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Lee H, Zhu C. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion. Exp Cell Res. 2016;349:85–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haswell ES, Phillips R, Rees DC. Mechanosensitive channels: what can they do and how do they do it? Structure. 2011;19:1356–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCoy RJ, O’Brien FJ. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng Part B Rev. 2010;16:587–601.

    Article  CAS  PubMed  Google Scholar 

  23. Brosig M. Mechanotransduction in fibroblasts. [Doctoral dissertation]. Basel, Switzerland: University of Basel; 2011.

  24. Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. Curr Biol. 2009;19:R526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Korossis S, Bolland F, Kearney J, Fisher J, Ingham E. Bioreactors in tissue engineering. Topics Tissue Eng. 2005;2:1–23.

    Google Scholar 

  26. Ladoux B, Mège RM. Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol. 2017;18:743–57.

    Article  CAS  PubMed  Google Scholar 

  27. Bidan CM, Kollmannsberger P, Gering V, Ehrig S, Joly P, Petersen A, et al. Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during in vitro tissue growth. J R Soc Interface. 2016;13:20160136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sakar MS, Eyckmans J, Pieters R, Eberli D, Nelson BJ, Chen CS. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat Commun. 2016;7:11036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rumpler M, Woesz A, Dunlop JW, van Dongen JT, Fratzl P. The effect of geometry on three-dimensional tissue growth. J R Soc Interface. 2008;5:1173–80.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sharma P, Ng C, Jana A, Padhi A, Szymanski P, Lee JSH, et al. Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps. Mol Biol Cell. 2017;28:2579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kollmannsberger P, Bidan CM, Dunlop JW, Fratzl P, Vogel V. Tensile forces drive a reversible fibroblast-to-myofibroblast transition during tissue growth in engineered clefts. Sci Adv. 2018;4:eaao4881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cruel M, Bensidhoum M, Nouguier-Lehon C, Dessombz O, Becquart P, Petite H, et al. Numerical study of granular scaffold efficiency to convert fluid flow into mechanical stimulation in bone tissue engineering. Tissue Eng Part C Methods. 2015;21:863–71.

    Article  CAS  PubMed  Google Scholar 

  33. Hossain MS, Bergstrom DJ, Chen XB. Prediction of cell growth rate over scaffold strands inside a perfusion bioreactor. Biomech Model Mechanobiol. 2015;14:333–44.

    Article  PubMed  Google Scholar 

  34. Lesman A, Blinder Y, Levenberg S. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: Implications for vascular tissue engineering. Biotechnol Bioeng. 2010;105:645–54.

    Article  CAS  PubMed  Google Scholar 

  35. Nava MM, Raimondi MT, Pietrabissa R. Multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor. Biomech Model Mechanobiol. 2013;12:1169–79.

    Article  PubMed  Google Scholar 

  36. Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Bréchet YJ, Fratzl P, et al. How linear tension converts to curvature: geometric control of bone tissue growth. PLoS One. 2012;7:e36336.

    Article  CAS  Google Scholar 

  37. Guyot Y, Papantoniou I, Luyten FP, Geris L. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold. Biomech Model Mechanobiol. 2016;15:169–80.

    Article  CAS  PubMed  Google Scholar 

  38. Chabanon M, Duval H, Francais O, Lepioufle B, Perrin E, Goyeau B, et al. Discrete model combined with mimetic microfluidic chips to study cell growth in porous scaffold under flow conditions. Comput Methods Biomech Biomed Engin. 2012;15:S25–6.

    Article  Google Scholar 

  39. Chabanon M, Duval H, Grenier J, Beauchesne C, Goyeau B, David B. Histological method to study the effect of shear stress on cell proliferation and tissue morphology in a bioreactor. Tissue Eng Regen Med. 2019;16:225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thibeaux R, Duval H, Smaniotto B, Vennat E, Néron D, David B. Assessment of the interplay between scaffold geometry, induced shear stresses, and cell proliferation within a packed bed perfusion bioreactor. Biotechnol Prog. 2019;35:e2880.

    Article  CAS  PubMed  Google Scholar 

  41. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Fibroblasts and their transformations: the connective-tissue cell family. In: Alberts B, Johnson A, Lewis J, Raff J, Robert K, Walter P, editors. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  42. Wang JHC, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. Gene. 2007;391:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. David B, Petite H, Myrtil V. Reacteur pour la mise en oeuvre d’un procédé de culture de tissus osseux. WO Patent App. PCT/FR2008/000,846; 2009.

  44. Yeatts AB, Gordon CN, Fisher JP. Formation of an aggregated alginate construct in a tubular perfusion system. Tissue Eng Part C Methods. 2011;17:1171–8.

    Article  CAS  PubMed  Google Scholar 

  45. Orr DE, Burg KJL. Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications. Ann Biomed Eng. 2008;36:1228–41.

    Article  PubMed  Google Scholar 

  46. Lakhkar NJ, Park JH, Mordan NJ, Salih V, Wall IB, Kim HW, et al. Titanium phosphate glass microspheres for bone tissue engineering. Acta Biomater. 2012;8:4181–90.

    Article  CAS  PubMed  Google Scholar 

  47. Vrana NE, Dupret-Bories A, Schultz P, Debry C, Vautier D, Lavalle P. Titanium microbead-based porous implants: bead size controls cell response and host integration. Adv Healthc Mater. 2014;3:79–87.

    Article  CAS  PubMed  Google Scholar 

  48. Thibeaux R, Perrin E, Smaniotto B, Duval H, Vennat E, Neron D, et al. Using x-ray computed tomography for quantification of cell proliferation within a perfusion bioreactor. Comput Methods Biomech Biomed Engin. 2015;18:S2072–3.

    Article  Google Scholar 

  49. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaviany M. Principles of heat transfer in porous media. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  51. Darcy H. Les fontaines publiques de la ville de Dijon: exposition et application. Victor Dalmont; 1856.

  52. Carman PC. Fluid flow through granular beds. Trans Inst Chem Eng. 1937;15:150–66.

    CAS  Google Scholar 

  53. Truskey GA, Proulx TL. Relationship between 3T3 cell spreading and the strength of adhesion on glass and silane surfaces. Biomaterials. 1993;14:243–54.

    Article  CAS  PubMed  Google Scholar 

  54. Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, et al. Study of osteoblastic cells in a microfluidic environment. Biomaterials. 2006;27:586–95.

    Article  CAS  PubMed  Google Scholar 

  55. Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop JW. Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater. 2013;2:186–94.

    Article  CAS  PubMed  Google Scholar 

  56. Kollmannsberger P, Bidan CM, Dunlop JW, Fratzl P. The physics of tissue patterning and extracellular matrix organisation: how cells join forces. Soft Matter. 2011;7:9549–60.

    Article  CAS  Google Scholar 

  57. Bischofs IB, Klein F, Lehnert D, Bastmeyer M, Schwarz US. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys J. 2008;95:3488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A. 2005;102:11594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vedula SRK, Hirata H, Nai MH, Brugués A, Toyama Y, Trepat X, et al. Epithelial bridges maintain tissue integrity during collective cell migration. Nat Mater. 2014;13:87–96.

    Article  CAS  PubMed  Google Scholar 

  60. Rossier OM, Gauthier N, Biais N, Vonnegut W, Fardin MA, Avigan P, et al. Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J. 2010;29:1055–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the French Agence Nationale de la Recherche through the Investissements d'avenir program (ANR-10-EQPX-37 MATMECA Grant) and the Fondation pour la Recherche Médicale (FRM FDT201805005480). We thank Pascal Silberzan (Institut Curie) for kindly providing the NIH-3T3 cell line and Stéphane Roux (LMT, ENS Paris-Saclay) for his kind help regarding image post-processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Goyeau.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare and all co-authors confirm agreement with the final statement. All authors have been appropriately disclosed according to the policy of the Journal.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beauchesne, C.C., Chabanon, M., Smaniotto, B. et al. Channeling Effect and Tissue Morphology in a Perfusion Bioreactor Imaged by X-Ray Microtomography. Tissue Eng Regen Med 17, 301–311 (2020). https://doi.org/10.1007/s13770-020-00246-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-020-00246-8

Keywords

Navigation