Skip to main content

Advertisement

Log in

A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

This article has been updated

Abstract

As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 13 April 2024

    The original article has been updated to correct Ana Cláudia Paiva-Santos’s affiliation.

References

  1. Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci: Mater Med. 2019;30:1–10.

    CAS  Google Scholar 

  2. Kopeček J, Yang J. Hydrogels as smart biomaterials. Polym Int. 2007;56(9):1078–98.

    Google Scholar 

  3. Saha N, Saarai A, Roy N, Kitano T, Saha P. Polymeric biomaterial based hydrogels for biomedical applications. J Biomater Nanobiotechnol. 2011;2(01):85.

    CAS  Google Scholar 

  4. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6(8):623–33.

    CAS  PubMed  Google Scholar 

  5. Raina N, Pahwa R, Bhattacharya J, Paul AK, Nissapatorn V, de Lourdes Pereira M, et al. Drug delivery strategies and biomedical significance of hydrogels: translational considerations. Pharmaceutics. 2022;14(3):574.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Aswathy S, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(4):e03719.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vasile C, Pamfil D, Stoleru E, Baican M. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules. 2020;25(7):1539.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. Soft Matter. 2020;16(6):1404–54.

    CAS  PubMed  Google Scholar 

  9. Ge Q, Chen Z, Cheng J, Zhang B, Zhang Y-F, Li H, et al. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci Adv. 2021;7(2):eaba4261.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ahsan A, Tian W-X, Farooq MA, Khan DH. An overview of hydrogels and their role in transdermal drug delivery. Int J Polym Mater Polym Biomater. 2021;70(8):574–84.

    CAS  Google Scholar 

  11. Bajwa M, Tabassam N, Hameed H, Irfan A, Zaman M, Khan MA, et al. Thermo-responsive sol-gel-based nano-carriers containing terbinafine HCl: formulation, in vitro and ex vivo characterization, and antifungal activity. Gels. 2023;9(10):830.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels. 2021;7(4):255.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu C, Guo H, Cui K, Li X, Ye YN, Kurokawa T, et al. Hydrogels as dynamic memory with forgetting ability. Proc Natl Acad Sci. 2020;117(32):18962–8.

    PubMed  PubMed Central  Google Scholar 

  14. Madduma-Bandarage US, Madihally SV. Synthetic hydrogels: synthesis, novel trends, and applications. J Appl Polym Sci. 2021;138(19):50376.

    CAS  Google Scholar 

  15. Mudassir J, Raza A, Khan MA, Hameed H, Shazly GA, Irfan A, et al. Design and evaluation of hydrophobic ion paired insulin loaded self micro-emulsifying drug delivery system for oral delivery. Pharmaceutics. 2023;15(7):1973.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Riaz M, Zaman M, Hameed H, Sarwar HS, Khan MA, Irfan A, et al. Lamotrigine-loaded poloxamer-based thermo-responsive sol–gel: formulation, in vitro assessment, ex vivo permeation, and toxicology study. Gels. 2023;9(10):817.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sikdar P, Uddin MM, Dip TM, Islam S, Hoque MS, Dhar AK, et al. Recent advances in the synthesis of smart hydrogels. Mater Adv. 2021;2(14):4532–73.

    CAS  Google Scholar 

  18. Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Poly (N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog Mater Sci. 2021;115:100702.

    CAS  Google Scholar 

  19. Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials. 2019;12(20):3323.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bordbar-Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems. Int J Mol Sci. 2022;23(7):3665.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Onaciu A, Munteanu RA, Moldovan AI, Moldovan CS, Berindan-Neagoe I. Hydrogels based drug delivery synthesis, characterization and administration. Pharmaceutics. 2019;11(9):432.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Waqar MA, Zaman M, Hameed H, Jamshaid M, Irfan A, Shazly GA, et al. Formulation, characterization, and evaluation of β-cyclodextrin functionalized hypericin loaded nanocarriers. ACS Omega. 2023;8(41):38191–203. https://doi.org/10.1021/acsomega.3c04444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327–39.

    CAS  PubMed  Google Scholar 

  24. Gao Y, Peng K, Mitragotri S. Covalently Crosslinked hydrogels via step-growth reactions: crosslinking chemistries, polymers, and clinical impact. Adv Mater. 2021;33(25):2006362.

    CAS  Google Scholar 

  25. Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and properties of physically cross-linked hydrogels based on natural polymers. Polym Rev. 2023;63(3):574–612.

    CAS  Google Scholar 

  26. Zhang X, Wang K, Hu J, Zhang Y, Dai Y, Xia F. Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. J Mater Chem A. 2020;8(47):25390–401.

    CAS  Google Scholar 

  27. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng: C. 2015;57:414–33.

    CAS  Google Scholar 

  28. Zou Z, Zhang B, Nie X, Cheng Y, Hu Z, Liao M, et al. A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Adv. 2020;10(65):39722–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Z, Xu W, Wang X, Jiang W, Ma X, Wang F, et al. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur Polym J. 2021;146:110253.

    CAS  Google Scholar 

  30. Hu N, Lin L, Tan J, Wang W, Lei L, Fan H, et al. Wearable bracelet monitoring the solar ultraviolet radiation for skin health based on hybrid IPN hydrogels. ACS Appl Mater Interfaces. 2020;12(50):56480–90.

    CAS  PubMed  Google Scholar 

  31. Mittal H, Al Alili A, Alhassan SM. Hybrid super-porous hydrogel composites with high water vapor adsorption capacity–adsorption isotherm and kinetics studies. J Environ Chem Eng. 2021;9(6):106611.

    CAS  Google Scholar 

  32. Naik ER, Reddy K, Swetha N. Super Porous Hydrogels. Res J Pharm Technol. 2019;12(1):434–42.

    Google Scholar 

  33. Ghumman SA, Noreen S, Hameed H, Elsherif MA, Shabbir R, Rana M, et al. Synthesis of pH-sensitive cross-linked basil seed gum/acrylic acid hydrogels by free radical copolymerization technique for sustained delivery of captopril. Gels. 2022;8(5):291.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghumman SA, Mahmood A, Noreen S, Aslam A, Ijaz B, Amanat A, et al. Chitosan-Linseed mucilage polyelectrolyte complex nanoparticles of Methotrexate: in vitro cytotoxic efficacy and toxicological studies. Arab J Chem. 2023;16(2):104463.

    Google Scholar 

  35. Zhou X, Guo Y, Zhao F, Yu G. Hydrogels as an emerging material platform for solar water purification. Acc Chem Res. 2019;52(11):3244–53.

    CAS  PubMed  Google Scholar 

  36. Zhou X, Guo Y, Zhao F, Shi W, Yu G. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv Mater. 2020;32(52):2007012.

    Google Scholar 

  37. Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels… a review. Saudi Pharm J. 2016;24(5):554–9.

    PubMed  Google Scholar 

  38. Duquette D, Nzediegwu C, Portillo-Perez G, Dumont MJ, Prasher S. Eco-friendly synthesis of hydrogels from starch, citric acid, and itaconic acid: swelling capacity and metal chelation properties. Starch-Stärke. 2020;72(3–4):1900008.

    CAS  Google Scholar 

  39. Park N, Kim J. Hydrogel-based artificial muscles: overview and recent progress. Adv Intell Syst. 2020;2(4):1900135.

    Google Scholar 

  40. Liao J, Huang H. Review on magnetic natural polymer constructed hydrogels as vehicles for drug delivery. Biomacromolecules. 2020;21(7):2574–94.

    CAS  PubMed  Google Scholar 

  41. Wang H, Zhang B, Zhang J, He X, Liu F, Cui J, et al. General one-pot method for preparing highly water-soluble and biocompatible photoinitiators for digital light processing-based 3D printing of hydrogels. ACS Appl Mater Interfaces. 2021;13(46):55507–16.

    CAS  PubMed  Google Scholar 

  42. Peng R, Luo Y, Cui Q, Zhang H, Li L. Covalent organic frameworks as efficient photoinitiators and cross-linkers to fabricate highly stretchable hydrogels. ACS Appl Mater Interfaces. 2022;14(43):49254–63.

    CAS  PubMed  Google Scholar 

  43. Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Palomino K, Magaña H, Bucio E. Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials. Gels. 2021;7(4):182.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaczmarek B, Nadolna K, Owczarek A. The physical and chemical properties of hydrogels based on natural polymers. In: Hydrogels based on natural polymers. 2020. pp. 151–172. https://doi.org/10.1016/B978-0-12-816421-1.00006-9.

  45. Khutoryanskaya OV, Mayeva ZA, Mun GA, Khutoryanskiy VV. Designing temperature-responsive biocompatible copolymers and hydrogels based on 2-hydroxyethyl (meth) acrylates. Biomacromolecules. 2008;9(12):3353–61.

    CAS  PubMed  Google Scholar 

  46. Haraguchi K, Li H-J, Xu Y, Li G. Copolymer nanocomposite hydrogels: Unique tensile mechanical properties and network structures. Polymer. 2016;96:94–103.

    CAS  Google Scholar 

  47. Dong Y, Qin Y, Dubaa M, Killion J, Gao Y, Zhao T, et al. A rapid crosslinking injectable hydrogel for stem cell delivery, from multifunctional hyperbranched polymers via RAFT homopolymerization of PEGDA. Polym Chem. 2015;6(34):6182–92.

    CAS  Google Scholar 

  48. Lutz PJ. Free radical homopolymerization, in heterogeneous medium, of linear and star-shaped polymerizable amphiphilic poly (ethers): a new way to design hydrogels well suited for biomedical applications. In Macromolecular symposia. 2001;164(1):277–292. https://doi.org/10.1002/1521-3900(200102)164:1<277::AIDMASY277>3.0.CO;2-E.

    Chapter  Google Scholar 

  49. Pellá MC, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr Polym. 2018;196:233–45.

    PubMed  Google Scholar 

  50. Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013;65(9):1172–87.

    CAS  PubMed  Google Scholar 

  51. Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2014;243:572–90.

    CAS  Google Scholar 

  52. Cui K, Gong JP. Aggregated structures and their functionalities in hydrogels. Aggregate. 2021;2(2):e33.

    CAS  Google Scholar 

  53. Khandan A, Jazayeri H, Fahmy MD, Razavi M. Hydrogels: types, structure, properties, and applications. Biomat Tiss Eng. 2017;4(27):143–69.

    Google Scholar 

  54. Omidian H, Rocca JG, Park K. Advances in superporous hydrogels. J Control Release. 2005;102(1):3–12.

    CAS  PubMed  Google Scholar 

  55. Kim J, Choi Y, Kim D-H, Yoon HY, Kim K. Injectable hydrogel-based combination cancer immunotherapy for overcoming localized therapeutic efficacy. Pharmaceutics. 2022;14(9):1908.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nagam SP, Jyothi AN, Poojitha J, Aruna S, Nadendla R. A comprehensive review on hydrogels. Int J Curr Pharm Res. 2016;8(1):19–23.

    CAS  Google Scholar 

  57. Shoukat H, Buksh K, Noreen S, Pervaiz F, Maqbool I. Hydrogels as potential drug-delivery systems: network design and applications. Ther Deliv. 2021;12(5):375–96.

    CAS  PubMed  Google Scholar 

  58. Li X, Sun Q, Li Q, Kawazoe N, Chen G. Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem. 2018;6:499.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hassan CM, Peppas NA. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers· PVA Hydrogels, Anionic Polymerisation Nanocomposites. 2000;153:37–65. https://doi.org/10.1007/3-540-46414-X_2.

    Article  CAS  Google Scholar 

  60. Ahmad S, Ahmad M, Manzoor K, Purwar R, Ikram S. A review on latest innovations in natural gums based hydrogels: preparations & applications. Int J Biol Macromol. 2019;136:870–90.

    CAS  PubMed  Google Scholar 

  61. Hassan CM, Peppas NA. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules. 2000;33(7):2472–9.

    CAS  Google Scholar 

  62. Adelnia H, Ensandoost R, Moonshi SS, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: present, past and future. Eur Polym J. 2022;164:110974.

    CAS  Google Scholar 

  63. Li L, He Y, Zheng X, Yi L, Nian W. Progress on preparation of pH/temperature-sensitive intelligent hydrogels and applications in target transport and controlled release of drugs. Int J Polym Sci. 2021;2021:1–14.

    Google Scholar 

  64. De Jong S, De Smedt S, Wahls M, Demeester J, Kettenes-van Den Bosch J, Hennink W. Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules. 2000;33(10):3680–6.

    Google Scholar 

  65. De Jong S, Van Eerdenbrugh B, van Nostrum CV, Kettenes-Van Den Bosch J, Hennink W. Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J Control Release. 2001;71(3):261–75.

    PubMed  Google Scholar 

  66. Nguyen QV, Park JH, Lee DS. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur Polym J. 2015;72:602–19.

    CAS  Google Scholar 

  67. Lu L, Yuan S, Wang J, Shen Y, Deng S, Xie L, et al. The formation mechanism of hydrogels. Curr Stem Cell Res Ther. 2018;13(7):490–6.

    CAS  PubMed  Google Scholar 

  68. Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM, Spruell JM, et al. Tunable, high modulus hydrogels driven by ionic coacervation. Adv Mater. 2011;23(20):2327–31.

    CAS  PubMed  Google Scholar 

  69. Hua J, Ng PF, Fei B. High-strength hydrogels: microstructure design, characterization and applications. J Polym Sci Part B: Polym Phys. 2018;56(19):1325–35.

    CAS  Google Scholar 

  70. Hu X, Vatankhah-Varnoosfaderani M, Zhou J, Li Q, Sheiko SS. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv Mater. 2015;27(43):6899–905.

    CAS  PubMed  Google Scholar 

  71. Guo M, Pitet LM, Wyss HM, Vos M, Dankers PY, Meijer E. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc. 2014;136(19):6969–77.

    CAS  PubMed  Google Scholar 

  72. Ahmad Z, Salman S, Khan SA, Amin A, Rahman ZU, Al-Ghamdi YO, et al. Versatility of hydrogels: from synthetic strategies, classification, and properties to biomedical applications. Gels. 2022;8(3):167.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Verbeke CS, Mooney DJ. Injectable, pore-forming hydrogels for in vivo enrichment of immature dendritic cells. Adv Healthcare Mater. 2015;4(17):2677–87.

    CAS  Google Scholar 

  74. Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci. 2019;7(3):843–55.

    CAS  PubMed  Google Scholar 

  75. Maitra J, Shukla VK. Cross-linking in hydrogels-a review. Am J Polym Sci. 2014;4(2):25–31.

    Google Scholar 

  76. Mahinroosta M, Farsangi ZJ, Allahverdi A, Shakoori Z. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Mater Today Chem. 2018;8:42–55.

    CAS  Google Scholar 

  77. Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 2020;12(11):2702.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ćorković I, Pichler A, Šimunović J, Kopjar M. Hydrogels: characteristics and application as delivery systems of phenolic and aroma compounds. Foods. 2021;10(6):1252.

    PubMed  PubMed Central  Google Scholar 

  79. Schauenburg D, Gálvez AO, Bode JW. Covalently functionalized amide cross-linked hydrogels from primary amines and polyethylene glycol acyltrifluoroborates (PEG-KATs). J Mater Chem B. 2018;6(29):4775–82.

    CAS  PubMed  Google Scholar 

  80. Jiang X, Xiang N, Wang J, Zhao Y, Hou L. Preparation and characterization of hybrid double network chitosan/poly (acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking. Carbohydr Polym. 2017;173:701–6.

    CAS  PubMed  Google Scholar 

  81. Koschella A, Hartlieb M, Heinze T. A “click-chemistry” approach to cellulose-based hydrogels. Carbohydr Polym. 2011;86(1):154–61.

    CAS  Google Scholar 

  82. Yigit S, Sanyal R, Sanyal A. Fabrication and functionalization of hydrogels through “click” chemistry. Chem–Asian J. 2011;6(10):2648–59.

    CAS  PubMed  Google Scholar 

  83. Li X, Xiong Y. Application of “click” chemistry in biomedical hydrogels. ACS Omega. 2022;7(42):36918–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33(5):1281–90.

    PubMed  Google Scholar 

  85. Wang L-S, Boulaire J, Chan PP, Chung JE, Kurisawa M. The role of stiffness of gelatin–hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials. 2010;31(33):8608–16.

    CAS  PubMed  Google Scholar 

  86. Lee SH, Lee Y, Lee S-W, Ji H-Y, Lee J-H, Lee DS, et al. Enzyme-mediated cross-linking of Pluronic copolymer micelles for injectable and in situ forming hydrogels. Acta Biomaterialia. 2011;7(4):1468–76.

    CAS  PubMed  Google Scholar 

  87. Badali E, Hosseini M, Mohajer M, Hassanzadeh S, Saghati S, Hilborn J, et al. Enzymatic crosslinked hydrogels for biomedical application. Polym Sci Ser A. 2021;63(Suppl 1):S1–22.

    Google Scholar 

  88. Nelson BR, Kirkpatrick BE, Miksch CE, Davidson MD, Skillin NP, Hach GK, et al. Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv Mater. 2023:2211209. https://doi.org/10.1002/adma.202211209.

  89. Kadłubowski S, Henke A, Ulański P, Rosiak JM, Bromberg L, Hatton TA. Hydrogels of polyvinylpyrrolidone (PVP) and poly (acrylic acid)(PAA) synthesized by photoinduced crosslinking of homopolymers. Polymer. 2007;48(17):4974–81.

    Google Scholar 

  90. Zhang J, Zheng Y, Lee J, Hua J, Li S, Panchamukhi A, et al. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat Commun. 2021;12(1):1670.

    PubMed  PubMed Central  Google Scholar 

  91. Yang Y, Liu X, Li Y, Wang Y, Bao C, Chen Y, et al. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability. Acta Biomaterialia. 2017;62:199–209.

    CAS  PubMed  Google Scholar 

  92. Xu J, Liu Y, Hsu S. Hydrogels based on Schiff base linkages for biomedical applications. Molecules. 2019;24(16):3005.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mo C, Xiang L, Chen Y. Advances in injectable and self-healing polysaccharide hydrogel based on the Schiff base reaction. Macromol Rapid Commun. 2021;42(10):2100025.

    CAS  Google Scholar 

  94. Li Y, Liu C, Tan Y, Xu K, Lu C, Wang P. In situ hydrogel constructed by starch-based nanoparticles via a Schiff base reaction. Carbohydr Polym. 2014;110:87–94.

    CAS  PubMed  Google Scholar 

  95. Veiga E, Ferreira L, Correia M, Pires PC, Hameed H, Araújo AR, et al. Anti-aging peptides for advanced skincare: focus on nanodelivery systems. Journal of Drug Delivery Science and Technology. 2023;89:105087. https://doi.org/10.1016/j.jddst.2023.105087.

    Article  CAS  Google Scholar 

  96. Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng: C. 2017;70:842–55.

    Google Scholar 

  97. Shapiro YE. Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach. Prog Polym Sci. 2011;36(9):1184–253.

    CAS  Google Scholar 

  98. Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng: R: Rep. 2015;93:1–49.

    PubMed  Google Scholar 

  99. Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous hydrogels: present challenges and future opportunities. Langmuir. 2023;39(6):2092–111.

    CAS  PubMed  Google Scholar 

  100. Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S. Biomedical applications of hydrogels in drug delivery system: an update. J Drug Deliv Sci Technol. 2021;66:102914.

    CAS  Google Scholar 

  101. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B: Rev. 2010;16(4):371–83.

    CAS  PubMed  Google Scholar 

  102. Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: a review. Eur Polym J. 2019;111:134–51.

    CAS  Google Scholar 

  103. Thang NH, Chien TB, Cuong DX. Polymer-based hydrogels applied in drug delivery: an overview. Gels. 2023;9(7):523.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang W, Shi Y, Lin G, Tang B, Li X, Zhang J, et al. Advances in mechanical properties of hydrogels for cartilage tissue defect repair. Macromol Biosci. 2023;23(7):2200539. https://doi.org/10.1002/mabi.202200539.

    Article  CAS  Google Scholar 

  105. Malektaj H, Drozdov AD, deClaville Christiansen J. Mechanical properties of alginate hydrogels cross-linked with multivalent cations. Polymers. 2023;15(14):3012.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kamaci M, Kaya I. Chitosan based hybrid hydrogels for drug delivery: preparation, biodegradation, thermal, and mechanical properties. Polym Adv Technol. 2023;34(2):779–88.

    CAS  Google Scholar 

  107. Shen K, Xu K, Zhang M, Yu J, Yang Y, Zhao X, et al. Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultra-durability as multifunctional ionic skins. Chem Eng J. 2023;451:138525.

    CAS  Google Scholar 

  108. Shen K, Liu Z, Xie R, Zhang Y, Yang Y, Zhao X, et al. Nanocomposite conductive hydrogels with robust elasticity and multifunctional responsiveness for flexible sensing and wound monitoring. Materials Horizons. 2023;10(6):2096–108. https://doi.org/10.1039/D3MH00192J.

    Article  CAS  PubMed  Google Scholar 

  109. Tanwar M, Gupta RK, Rani A. Natural gums and their derivatives based hydrogels: in biomedical, environment, agriculture, and food industry. Crit Rev Biotechnol. 2024;44(2):275–301. https://doi.org/10.1080/07388551.2022.2157702.

    Article  PubMed  Google Scholar 

  110. Chiani E, Beaucamp A, Hamzeh Y, Azadfallah M, Thanusha A, Collins MN. Synthesis and characterization of gelatin/lignin hydrogels as quick release drug carriers for ribavirin. Int J Biol Macromol. 2023;224:1196–205.

    CAS  PubMed  Google Scholar 

  111. Zhang Y, Wang Z, Sun Q, Li Q, Li S, Li X. Dynamic hydrogels with viscoelasticity and tunable stiffness for the regulation of cell behavior and fate. Materials. 2023;16(14):5161.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu C, Yu Q, Yuan Z, Guo Q, Liao X, Han F, et al. Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small “dynamic bridges” to regulate BMSC behaviors for osteochondral regeneration. Bioact Mater. 2023;25:445–59.

    CAS  PubMed  Google Scholar 

  113. Wan Y, Qiu W, Zhu H, Zhang Q, Zhu S. Engineering cohesion and adhesion through dynamic bonds for advanced adhesive materials. Can J Chem Eng. 2023;101(9):4941–54. https://doi.org/10.1002/cjce.24849.

    Article  CAS  Google Scholar 

  114. Guo Z, Xiong Y, Zhang S, Yuan T, Xia J, Wei R, et al. Naturally derived highly resilient and adhesive hydrogels with application as surgical adhesive. Int J Biol Macromol. 2023;253:127192.

    CAS  PubMed  Google Scholar 

  115. Feng W, Wang Z. Tailoring the swelling-shrinkable behavior of hydrogels for biomedical applications. Adv Sci. 2023;10(28):2303326.

    CAS  Google Scholar 

  116. Kasai RD, Radhika D, Archana S, Shanavaz H, Koutavarapu R, Lee D-Y, et al. A review on hydrogels classification and recent developments in biomedical applications. Int J Polym Mater Polym Biomater. 2023;72(13):1059–69.

    CAS  Google Scholar 

  117. Sun Z, Dong C, Chen B, Li W, Hu H, Zhou J, et al. Strong, tough, and anti-swelling supramolecular conductive hydrogels for amphibious motion sensors. Small. 2023;19(44):2303612.

    CAS  Google Scholar 

  118. Wang H, Lu Z, Wang F, Li Y, Ou Z, Jiang J. A novel strategy to reinforce double network hydrogels with enhanced mechanical strength and swelling ratio by nano cement hydrates. Polymer. 2023;269:125725.

    CAS  Google Scholar 

  119. Soleimani S, Heydari A, Fattahi M. Swelling prediction of calcium alginate/cellulose nanocrystal hydrogels using response surface methodology and artificial neural network. Ind Crop Prod. 2023;192:116094.

    CAS  Google Scholar 

  120. Pi M, Qin S, Wen S, Wang Z, Wang X, Li M, et al. Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication. Adv Funct Mater. 2023;33(1):2210188.

    CAS  Google Scholar 

  121. Dattilo M, Patitucci F, Prete S, Parisi OI, Puoci F. Polysaccharide-based hydrogels and their application as drug delivery systems in cancer treatment: a review. J Funct Biomater. 2023;14(2):55.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin X, Wang X, Cui H, Ouyang G, Guo H. A universal strategy for preparing tough and smart glassy hydrogels. Chem Eng J. 2023;457:141280.

    CAS  Google Scholar 

  123. Xu L, Qiao Y, Qiu D. Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain cross-linking. Adv Mater. 2023;35(12):2209913.

    CAS  Google Scholar 

  124. Cai S, He X. Network structure and viscoelastic behavior of high-strength crystal microphase crosslinking hydrogels analyzed from combined model. J Mol Liq. 2023;376:121411.

    CAS  Google Scholar 

  125. Azeem MK, Islam A, Khan RU, Rasool A, Qureshi MAR, Rizwan M, et al. Eco-friendly three-dimensional hydrogels for sustainable agricultural applications: current and future scenarios. Polym Adv Technol. 2023;34(9):3046–62.

    CAS  Google Scholar 

  126. De Berardinis L, Plazzotta S, Manzocco L. Optimising soy and pea protein gelation to obtain hydrogels intended as precursors of food-grade dried porous materials. Gels. 2023;9(1):62.

    PubMed  PubMed Central  Google Scholar 

  127. Liu Z, Li J, Zhang Z, Liu J, Wu C, Yu Y. Incorporating self-healing capability in temperature-sensitive hydrogels by non-covalent chitosan crosslinkers. Eur Polym J. 2023;182:111728.

    CAS  Google Scholar 

  128. Shang H, Yang X, Liu H. Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery. Carbohydr Polym. 2023;313:120875.

    CAS  PubMed  Google Scholar 

  129. Zolfagharian S, Zahedi P, Ardestani MS, Khatibi A, Jafarkhani S. Sodium alginate/xanthan-based nanocomposite hydrogels containing 5-fluorouracil: characterization and cancer cell death studies in presence of halloysite nanotube. J Ind Eng Chem. 2023;120:374–86.

    CAS  Google Scholar 

  130. Barbosa AI, Lima SAC, Yousef I, Reis S. Evaluating the skin interactions and permeation of alginate/fucoidan hydrogels per se and associated with different essential oils. Pharmaceutics. 2023;15(1):190.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Araújo D, Rodrigues T, Roma-Rodrigues C, Alves VD, Fernandes AR, Freitas F. Chitin-glucan complex hydrogels: physical-chemical characterization, stability, in vitro drug permeation, and biological assessment in primary cells. Polymers. 2023;15(4):791.

    PubMed  PubMed Central  Google Scholar 

  132. Li C, Zhu J, Zhang R, Wu Z, Cui H, Chen Z, et al. Hydrogels with amphiphilic chains and targeted adhesion for high-areal-capacity zinc batteries. Energy Storage Mater. 2023;60:102858. https://doi.org/10.1016/j.ensm.2023.102858.

    Article  Google Scholar 

  133. Morozova SM, Gevorkian A, Kumacheva E. Design, characterization and applications of nanocolloidal hydrogels. Chem Soc Rev. 2023;52(15):5317–39.

    CAS  PubMed  Google Scholar 

  134. Solbu AA, Caballero D, Damigos S, Kundu SC, Reis RL, Halaas Ø, et al. Assessing cell migration in hydrogels: an overview of relevant materials and methods. Mater Today Bio. 2023;18:100537.

    CAS  PubMed  Google Scholar 

  135. Wang S, Liu J, Wang L, Cai H, Wang Q, Wang W, et al. Underwater adhesion and anti-swelling hydrogels. Adv Mater Technol. 2023;8(6):2201477.

    CAS  Google Scholar 

  136. Kumar R, Parashar A. Atomistic simulations of pristine and nanoparticle reinforced hydrogels: a review. Wiley Interdiscip Rev: Comput Mol Science. 2023;13(4):e1655. https://doi.org/10.1002/wcms.1655.

    Article  CAS  Google Scholar 

  137. Zhao Z, Fan L, Song G, Huo M. Micelle-cross-linked hydrogels with strain stiffening properties regulated by Intramicellar cross-linking. Chem Mater. 2024;36(3):1436–48. https://doi.org/10.1021/acs.chemmater.3c02570.

    Article  CAS  Google Scholar 

  138. Krishnan MR, Almohsin A, Alsharaeh EH. Mechanically robust and thermally enhanced sand-polyacrylamide-2D nanofiller composite hydrogels for water shutoff applications. J Appl Polym Sci. 2024;141(7):e54953.

    CAS  Google Scholar 

  139. El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, et al. Smart/stimuli responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: a state-of-the-art review. Int J Biol Macromol. 2024;260:129323. https://doi.org/10.1016/j.ijbiomac.2024.129323.

    Article  CAS  PubMed  Google Scholar 

  140. Liu R. Designing biocompatible functional hydrogels: experiments and simulations. Apollo - University of Cambridge Repository. 2023. https://doi.org/10.17863/CAM.93176.

  141. Ningrum DR, Hanif W, Mardhian DF, Asri LA. In vitro biocompatibility of hydrogel polyvinyl alcohol/moringa oleifera leaf extract/graphene oxide for wound dressing. Polymers. 2023;15(2):468.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wu Y, Zhang Y, Yan M, Hu G, Li Z, He W, et al. Research progress on the application of inkjet printing technology combined with hydrogels. Appl Mater Today. 2024;36:102036.

    Google Scholar 

  143. Han Q, He J, Bai L, Huang Y, Chen B, Li Z, et al. Injectable bioadhesive photocrosslinkable hydrogels with sustained release of kartogenin to promote chondrogenic differentiation and partial-thickness cartilage defects repair. Adv Healthc Mater. 2024:2303255. https://doi.org/10.1002/adhm.202303255.

  144. Fu Z, Xiao S, Wang P, Zhao J, Ling Z, An Z, et al. Injectable, stretchable, toughened, bioadhesive composite hydrogel for bladder injury repair. RSC Adv. 2023;13(16):10903–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhu H, Zheng J, Oh XY, Chan CY, Low BQL, Tor JQ, et al. Nanoarchitecture-integrated hydrogel systems toward therapeutic applications. ACS Nano. 2023;17(9):7953–78.

    CAS  PubMed  Google Scholar 

  146. Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, et al. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: a review. Int J Biol Macromol. 2023;247:125606. https://doi.org/10.1016/j.ijbiomac.2023.125606.

    Article  CAS  PubMed  Google Scholar 

  147. Yanev P, van Tilborg GA, Boere KW, Stowe AM, van der Toorn A, Viergever MA, et al. Thermosensitive biodegradable hydrogels for local and controlled cerebral delivery of proteins: MRI-based monitoring of in vitro and in vivo protein release. ACS Biomater Sci Eng. 2023;9(2):760–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Nitti P, Demitri C, Sannino A, Ambrosio L. Fundamentals of hydrogels II—architecture and biodegradability. Hydrogels for Tissue Engineering and Regenerative Medicine: Elsevier; 2024. p. 13-28.

  149. Wang X, Li Q, Miao Y, Chen X, Zhang X, Shi J, et al. A 0D–2D heterojunction bismuth molybdate-anchored multifunctional hydrogel for highly efficient eradication of drug-resistant bacteria. ACS Nano. 2023;17(16):15568–89.

    CAS  PubMed  Google Scholar 

  150. Wang D, Wang W, Wang P, Wang C, Niu J, Liu Y, et al. Research progress of colon-targeted oral hydrogel system based on natural polysaccharides. Int J Pharm. 2023;643:123222. https://doi.org/10.1016/j.ijpharm.2023.123222.

    Article  CAS  PubMed  Google Scholar 

  151. Liu X, Zhang L, El Fil B, Díaz-Marín CD, Zhong Y, Li X, et al. Unusual temperature dependence of water sorption in semicrystalline hydrogels. Adv Mater. 2023;35(22):2211763.

    CAS  Google Scholar 

  152. Wang M, Du J, Li M, Pierini F, Li X, Yu J, et al. In situ forming double-crosslinked hydrogels with highly dispersed short fibers for the treatment of irregular wounds. Biomater Sci. 2023;11(7):2383–94.

    CAS  PubMed  Google Scholar 

  153. Morozova SM. Recent advances in hydrogels via Diels-Alder crosslinking: design and applications. Gels. 2023;9(2):102.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Fletes-Vargas G, Espinosa-Andrews H, Cervantes-Uc JM, Limón-Rocha I, Luna-Bárcenas G, Vázquez-Lepe M, et al. Porous chitosan hydrogels produced by physical crosslinking: physicochemical, structural, and cytotoxic properties. Polymers. 2023;15(9):2203.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu B, Jin M, Wang D-A. In vitro expansion of hematopoietic stem cells in a porous hydrogel-based 3D culture system. Acta Biomaterialia. 2023;161:67–79.

    CAS  PubMed  Google Scholar 

  156. Cofelice M, Messia MC, Marconi E, Cuomo F, Lopez F. Effect of the xanthan gum on the rheological properties of alginate hydrogels. Food Hydrocoll. 2023;142:108768.

    CAS  Google Scholar 

  157. Elango J, Lijnev A, Zamora-Ledezma C, Alexis F, Wu W, Marín JMG, et al. The relationship of rheological properties and the performance of silk fibroin hydrogels in tissue engineering application. Process Biochem. 2023;125:198–211.

    CAS  Google Scholar 

  158. Wang Y, Li J, Tang M, Peng C, Wang G, Wang J, et al. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment. Biomed Pharmacother. 2023;162:114688.

    CAS  PubMed  Google Scholar 

  159. Tian B, Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: a review. Int J Biol Macromol. 2023;235:123902. https://doi.org/10.1016/j.ijbiomac.2023.123902.

    Article  CAS  PubMed  Google Scholar 

  160. Zhu C, Zhang X, Gan J, Geng D, Bian X, Cheng Y, et al. A pH-sensitive hydrogel based on carboxymethylated konjac glucomannan crosslinked by sodium trimetaphosphate: synthesis, characterization, swelling behavior and controlled drug release. Int J Biol Macromol. 2023;232:123392.

    CAS  PubMed  Google Scholar 

  161. Thambi T, Jung JM, Lee DS. Recent strategies to develop pH-sensitive injectable hydrogels. Biomater Sci. 2023;11(6):1948–61.

    CAS  PubMed  Google Scholar 

  162. Tanga S, Aucamp M, Ramburrun P. Injectable thermoresponsive hydrogels for cancer therapy: challenges and prospects. Gels. 2023;9(5):418.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Khan B, Arbab A, Khan S, Fatima H, Bibi I, Chowdhry NP, et al. Recent progress in thermosensitive hydrogels and their applications in drug delivery area. MedComm–Biomater Appl. 2023;2(3):e55.

    Google Scholar 

  164. Fard ST, Thongrom B, Achazi K, Ma G, Haag R, Tzschucke CC. Photo-responsive hydrogels based on a ruthenium complex: synthesis and degradation. Soft Matter. 2024;20(6):1301–8. https://doi.org/10.1039/d3sm01232h.

    Article  CAS  Google Scholar 

  165. Li ZY, Zhang XJ, Gao YM, Song Y, Sands MX, Zhou SB, et al. Photo-responsive hydrogel for contactless dressing change to attenuate secondary damage and promote diabetic wound healing. Adv Healthc Mater. 2023;12(17):2202770. https://doi.org/10.1002/adhm.202202770.

    Article  CAS  Google Scholar 

  166. Vu TT, Gulfam M, Jo S-H, Rizwan A, Joo S-B, Lee B, et al. The effect of molecular weight and chemical structure of cross-linkers on the properties of redox-responsive hyaluronic acid hydrogels. Int J Biol Macromol. 2023;238:124285.

    CAS  PubMed  Google Scholar 

  167. Jia S, Wang J, Wang X, Liu X, Li S, Li Y, et al. Genetically encoded in situ gelation redox-responsive collagen-like protein hydrogel for accelerating diabetic wound healing. Biomater Sci. 2023;11(24):7748–58.

    CAS  PubMed  Google Scholar 

  168. Yousefiasl S, Zare I, Ghovvati M, Ghomi M. Enzyme-responsive materials: properties, design, and applications. Stimuli-Responsive Materials for Biomedical Applications: ACS Publications; 2023. p. 203-29

  169. Uroro E, Bright R, Dabare PL, Quek J, Goswami N, Vasilev K. Enzyme-responsive polycationic silver nanocluster-loaded PCL nanocomposites for antibacterial applications. Mater Today Chem. 2023;28:101376.

    CAS  Google Scholar 

  170. Chen F, Qin J, Wu P, Gao W, Sun G. Glucose-responsive antioxidant hydrogel accelerates diabetic wound healing. Adv Healthc Mater. 2023;12(21):2300074.

    CAS  Google Scholar 

  171. Jain N, Singh Y, Nouri A, Garg U, Pandey M. Assessment of healing capacity of glucose-responsive smart gels on the diabetic wound: a comprehensive review. J Drug Deliv Sci Technol. 2024;93:105403. https://doi.org/10.1016/j.jddst.2024.105403.

    Article  CAS  Google Scholar 

  172. Qian C, Li Y, Chen C, Han L, Han Q, Liu L, et al. A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators. Chem Eng J. 2023;454:140263.

    CAS  Google Scholar 

  173. Farasati Far B, Omrani M, Naimi Jamal MR, Javanshir S. Multi-responsive chitosan-based hydrogels for controlled release of vincristine. Commun Chem. 2023;6(1):28.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang W, Zha K, Xiong Y, Hu W, Chen L, Lin Z, et al. Glucose-responsive, antioxidative HA-PBA-FA/EN106 hydrogel enhanced diabetic wound healing through modulation of FEM1b-FNIP1 axis and promoting angiogenesis. Bioact Mater. 2023;30:29–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Bas Y, Sanyal R, Sanyal A. Hyaluronic-acid based redox-responsive hydrogels using the Diels-Alder reaction for on-demand release of biomacromolecules. J Macromol Sci, Part A. 2023;60(4):246–54.

    CAS  Google Scholar 

  176. Saravanou SF, Ioannidis K, Dimopoulos A, Paxinou A, Kounelaki F, Varsami SM, et al. Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release. Carbohydr Polym. 2023;312:120790.

    CAS  PubMed  Google Scholar 

  177. Lv Z, Hu T, Bian Y, Wang G, Wu Z, Li H, et al. A MgFe-LDH nanosheet-incorporated smart thermo-responsive hydrogel with controllable growth factor releasing capability for bone regeneration. Adv Mater. 2023;35(5):2206545.

    CAS  Google Scholar 

  178. Ding Y, Li Y, Yang B, Pan Y, Cheng J, Meng S, et al. Preparation of photo-responsive DNA supramolecular hydrogels and their application as UV radiometers. Chem Res Chin Univ. 2023;39(1):115–20.

    CAS  Google Scholar 

  179. Liubimtsev N, Zagradska-Paromova Z, Appelhans D, Gaitzsch J, Voit B. Photoresponsive double cross-linked supramolecular hydrogels based on a-cyclodextrin/azobenzene host–guest complex. Macromol Chem Phys. 2023;224(3):2200372.

    CAS  Google Scholar 

  180. Zhou Y, Zhai Z, Yao Y, Stant JC, Landrum SL, Bortner MJ, et al. Oxidized hydroxypropyl cellulose/carboxymethyl chitosan hydrogels permit pH-responsive, targeted drug release. Carbohydr Polym. 2023;300:120213.

    CAS  PubMed  Google Scholar 

  181. Du M, Jin J, Zhou F, Chen J, Jiang W. Dual drug-loaded hydrogels with pH-responsive and antibacterial activity for skin wound dressing. Colloids Surf B: Biointerfaces. 2023;222:113063.

    CAS  PubMed  Google Scholar 

  182. Bertilla XJ, Rupachandra S. Insights into current directions of protein and peptide-based hydrogel drug delivery systems for inflammation. Polym Bull. 2023;80(9):9409–36.

    CAS  Google Scholar 

  183. Xie Y, Liu M, Cai C, Ye C, Guo T, Yang K, et al. Recent progress of hydrogel-based local drug delivery systems for postoperative radiotherapy. Front Oncol. 2023;13:1027254.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.

    Google Scholar 

  185. Ghumman SA, Mahmood A, Noreen S, Hameed H, Kausar R, Rana M, et al. Mimosa pudica mucilage nanoparticles of losartan potassium: characterization and pharmacodynamics evaluation. Saudi Pharm J. 2023;31(8):101695.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Xinming L, Yingde C, Lloyd AW, Mikhalovsky SV, Sandeman SR, Howel CA, et al. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Contact Lens Anterior Eye. 2008;31(2):57–64.

    PubMed  Google Scholar 

  187. Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules. 2019;24(3):603.

    PubMed  PubMed Central  Google Scholar 

  188. Rahmani P, Shojaei A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv Colloid Interface Sci. 2021;298:102553.

    CAS  PubMed  Google Scholar 

  189. Huang H, Qi X, Chen Y, Wu Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: a review. Saudi Pharm J. 2019;27(7):990–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels in the clinic. Bioeng Transl Med. 2020;5(2):e10158.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Chao Y, Chen Q, Liu Z. Smart injectable hydrogels for cancer immunotherapy. Adv Funct Mater. 2020;30(2):1902785.

    CAS  Google Scholar 

  192. Amiryaghoubi N, Fathi M, Barar J, Omidi Y. Hydrogel-based scaffolds for bone and cartilage tissue engineering and regeneration. React Funct Polym. 2022;177:105313. https://doi.org/10.1016/j.reactfunctpolym.2022.105313.

    Article  CAS  Google Scholar 

  193. Zhang Q, Liu Y, Yang G, Kong H, Guo L, Wei G. Recent advances in protein hydrogels: from design, structural and functional regulations to healthcare applications. Chem Eng J. 2023;451:138494.

    CAS  Google Scholar 

  194. Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Targeted Ther. 2021;6(1):426.

    CAS  Google Scholar 

  195. Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: a review. Int J Pharm. 2020;573:118803.

    CAS  PubMed  Google Scholar 

  196. He Q, Cheng Y, Deng Y, Wen F, Lai Y, Li H. Conductive hydrogel for flexible bioelectronic device: current progress and future perspective. Adv Funct Mater. 2024;34(1):2308974.

    CAS  Google Scholar 

  197. Ko A, Liao C. Hydrogel wound dressings for diabetic foot ulcer treatment: status-quo, challenges, and future perspectives. BMEMat. 2023;1(3):e12037.

    Google Scholar 

Download references

Acknowledgements

Figures 19 were created using biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

Huma Hameed had the idea for the article. Huma Hameed, Saleha Faheem, and Muhammad Jamshaid performed the literature search and finished the manuscript. Saleha Faheem and Hafiz Shoaib Sarwar worked on the figures and table; Ana Cláudia Paiva-Santos made critical revisions and proofread the manuscript.

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Huma Hameed.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, H., Faheem, S., Paiva-Santos, A.C. et al. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 25, 64 (2024). https://doi.org/10.1208/s12249-024-02786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02786-x

Keywords

Navigation