Skip to main content
Log in

Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions

  • Cellular Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Osteoblastic cells cultured on microcarriers in bioreactors are a potentially useful tool to reproduce the in vivo three-dimensional (3D) bone network. The aim is to compare different types of 3D and two-dimensional (2D) osteoblastic culture. ROS17/2.8 cells are cultured in a bioreactor (rotating-wall vessel) or in two kinds of control (3D petri dish, 3D Percoll) and on two types of microcarrier (Cytodex 3 and Biosilon). Growth and morphology are determined by cell count and SEM, and differentiation is determined by dosage of alkaline phosphatase (ALP) activity and northern blots (ALP and osteocalcin (OC)). SEM shows that Biosilon microcarriers are the best substrate. Proliferation in the RWV and 3D petri dish is still in the exponential phase, whereas growth in the 2D culture reaches a plateau after eight days of culture. ALP activity and the ALP and OC mRNA levels are similar at day 8 for both the RWV and 3D petri dish. However, at day 10, cells are more differentiated in the RWV. The study shows that osteoblasts are both proliferate and differentiate in 3D structures. A BrDU immunocytochemical approach shows that only the cells in the periphery of the aggregates proliferate. Therefore the bioreactor may be a suitable tissue culture model for investigation of growth and differentiation processes in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barou, O., Laroche, N., Palles, S., Alexandre, C. andLafage-Proust, M. H. (1997): ‘Preosteoblastic proliferation assessed with BrDU in undecalcified, epon-embedded adult rat trabecular bone,’J. Histochem. Cytochem.,45 (9), pp. 1–7

    Google Scholar 

  • Becker, J. L. Prewett, T. L., Spaulding, G. F. andGoodwin, T. J. (1993): ‘Three-dimensional growth and differentiation of ovarian tumor cell line in High Aspect Rotating-Wall Vessel: Morphologic and embroyologic considerations,’J. Cell. Biochem.,51, pp. 283–289

    Article  Google Scholar 

  • Bellow, C. G., Aubin, J. E., Heershce, J. N. M. andAntosz, M. E. (1986): ‘Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell population,’Calcif. Tissue Int.,38, pp. 143–154

    Google Scholar 

  • Benayahu, D., Kletter, Y., Zipori, D., andWientroub, S. (1989): ‘Bone marrow-derived stromal cell line expressing osteoblastic phenotype in-vitro and osteogenic capacity in-vivo,’J. Cell. Biol.,96, pp. 191–198

    Google Scholar 

  • Benayahu, D., Kompier, R., Shamay, A., Kadouri, A., Zipori, D. andWientroub, S. (1994): ‘Mineralization of marrow-stromal osteoblasts MBA-15 on three-dimensional carriers,’Calcif. Tissue Int.,55, pp. 120–127

    Article  Google Scholar 

  • Berthod, F., Hayek, D., Damour, O. andCollombel C. (1993): ‘Collagen synthesis by fibroblasts cultures within a collagen sponge,’Biomaterials,14, (10), pp. 749–754

    Article  Google Scholar 

  • Bradford, M. M. (1976): ‘A rapid and sensitive method for the quantification of microgram quantities or protein utilizing the principle of protein-dye binding,’Anal. Biochem.,72, pp. 248–254

    Article  Google Scholar 

  • Briegle, W. (1983): ‘The clinostat, a tool for analyzing the influence of acceleration on solid-liquid systems,’ESA Symposium,206, pp. 97–101

    Google Scholar 

  • Casser-Bette, M., Murray, A. B., Closs, E. I., Erfle, V. andSchmidt, J. (1990): ‘Bone formation by osteoblast-like cells in a three-dimensional cell culture,’Calcif. Tissue Int.,46, pp. 46–56

    Google Scholar 

  • Cherry, R. S. andPapoutsakis, E. T. (1988): ‘Physical mechanisms of cell damage in microcarrier cell culture in cell culture bioreactors,’Biotechnol. Bioneng.,321, pp. 2002–2014

    Google Scholar 

  • Chomczynski, P. andSacchi, N. (1987): ‘Single step method of RNA isolation by acid guanidium phenol chloroform extraction’,Anal. Bio. Chem.,162, pp. 156–159

    Google Scholar 

  • Clark, J., Hirtenstein, M. andGeeb, C. (1980): ‘Critical parameters in the microcarrier culture of animal cells,’Dev. Biol. Standard,46, pp. 117–124

    Google Scholar 

  • Croughan, M. S., Sayre, S. S. andWang, D. I. C. (1989): ‘Viscous reduction of turbulent damage in animal cell culture,’Biotechnol. Bioeng.,33, pp. 862–872

    Article  Google Scholar 

  • Donahue, H. J., McLeod, K. J., Rubin, C. T., Andersen, J., Grine, E. A., Hertzberg, E. L. andBrink, P. R. (1995): ‘Cell-to-cell communication in osteoblastic networks: cell line-dependent hormonal regulation of gap junction function,’J. Bone Miner. Res.,10, (6), pp. 881–889

    Article  Google Scholar 

  • Freed, L. E., Vunjak-Nopvakovic, G. andLanger, R. (1993): ‘Cultivations of cell-polymer cartilage implants in bioreactors,’J. Cell. Biochem.,51, pp. 257–264

    Article  Google Scholar 

  • Folkmann, J. andMoscona, A. (1978): ‘The role of cell shape in growth control,’Nature,273, pp. 345–349

    Article  Google Scholar 

  • Goodwin, T. J., Jessup, J. M., andWolf, D. A. (1992): ‘Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-KM in Rotating-Wall Vessels,’In Vitro Cell. Dev. Biol.,28A, pp. 47–60

    Google Scholar 

  • Goodwin, T. J., Schroeder, W. F., Wolf, D. A. andMoyer, M. P. (1993a): ‘Rotating-Wall Vessel coculture of small intestine as a prelude to tissue modeling: Aspects of simulated microgravity,’P.S.E.B.M.,202, pp. 181–192

    Google Scholar 

  • Goodwin, T.J., Prewett, J. T., Wolf, D. A. andSpaulding, G. F. (1993b): ‘Reduced shear stress a major component on the ability of mammalian tissues to form three dimensional assemblies in simulated microgravity,’J. Cell Biochem.,51, pp. 301–311

    Article  Google Scholar 

  • Hoffmann, R. M. (1993): ‘To do tissue culture in two or three dimensions? That is the question,’Stem Cells Dayt.,11 (2), pp 105–111

    Google Scholar 

  • Ingber, D. E., Prusty, D., Sun, Z., Betensky, H. andWang, N. (1995): ‘Cell shape, cytoskeletal mechanics and cell cycle control in angiogenesis,’J. Biomech.,28, pp. 1471–1484

    Article  Google Scholar 

  • Jessup, J. M., Brown, D., Fitzgerald, W., Nachman, F. A., Goodwin, T. J. andSpaulding, G. (1997): ‘Three-dimensional culture of bovine chondrocytes in rotating-wall vessels,’In Vitro Animal,33, (5), pp. 352–357

    Google Scholar 

  • Klement, B. J. andSpooner, B. S. (1993): ‘Utilisation of microgravity biorectors for differentiation of mammalian skeletal tissue,’J. Cell Biochem.,51, pp. 252–256

    Article  Google Scholar 

  • Leighton J. (1951): ‘A sponge matrix for tissue culture. Formation of organized aggregates of cells in vitro,’J. Natl. Cancer Inst.,12, pp. 545–561

    Google Scholar 

  • Lewis, M. L., Moriarity, D. M. andCampbell, P. S. (1993): ‘Use of microgravity for development of an in vitro rat salivary gland cell culture model,’J. Cell. Biochem.,51, pp. 265–273

    Article  Google Scholar 

  • Majeska, R. J., Rodan, S. B. andRodan, G. A. (1980): ‘Parathyroid hormone responsive clonal cell lines from rat osteosarcoma,’Endocrinology,107, pp. 1494–1503

    Article  Google Scholar 

  • Masi, L., Franchi, A., Santucchi, M., Danielli, D., Arganini, L., Giannone, V., Formigli, L., Benvenuti, S., Tanini, A., Beghe, F., Mian, M. andBrandi, L. (1992): ‘Adhesion, growth and matrix production by osteoblasts on collagen substrata,’Calcif. Tissue Int.,51, pp. 202–212

    Article  Google Scholar 

  • Mizuno, M., Shindo, M., Kobayashi, D., Tsuruga, E., Amemiya, A. andKuboti, Y. (1977): ‘Osteogenesis by bone stromal cells maintained on type I collagen matrix gels in vivo,’Bone,20, pp. 101–107

    Article  Google Scholar 

  • Prewett, T. L., Goodwin, T. J. andSpaulding, G. F. (1993): ‘Three-dimensional modeling of T-24 bladder carcinoma cell line: a new simulated microgravity culture vessel,’J. Tissue Cult. Meth.,15, pp. 29–36

    Article  Google Scholar 

  • Rodan, G. A. andNoda, M. (1991): ‘Gene expression in osteoblastic cells,’Crit. Rev. Eukaryotic Gene Express.,1, pp. 85–98

    Google Scholar 

  • Rodan, G. A. andRodan, S. B. (1992): ‘The osteoblastic phenotype,’Calcium Regulat. Bone Matab.,3, pp. 183–192

    Google Scholar 

  • Sautier, J. M., Nefussi, J. R. andForest, N. (1992): ‘Mineralization and bone formation on microcarrier beads with isolated rat calvaria cell population,’Calcif. Tissue Int.,50, pp. 527–532

    Article  Google Scholar 

  • Sourla, A., Doillon, C. andKoutsilieris, M. (1996): ‘Three-dimensional type I collagen gel system containing MG-63 osteoblast-like cells as a model for studying local bone reaction caused by metastatic cancer cells,’Anticancer Res.,16, pp. 2773–2780

    Google Scholar 

  • Stein, G. S., Lian, J. B., Gerstenfeld, L. G., Shalhoub, V., Aronow, M., Owen, T. andMarkose, E. (1989): ‘The onset and progression of osteoblast differentiation is functionally related to cellular proliferation,’Connect. Tissue Res.,20, pp. 2–13

    Google Scholar 

  • Stein, G. S. andLian, J. B. (1995): ‘Molecular mechanisms mediating proliferation-differentiation interrelationships during progressive development of the osteoblast phenotype: update 1995,’Endocr. Rev.,4, pp. 290–297

    Google Scholar 

  • Tomson, A., Demets, R., Van Den Briel, W. andVan Den Ende, H. (1990): ‘Unicellular algae in space,’ESA Symposium,307, pp. 329–337

    Google Scholar 

  • Tsao, Y. D., Goodwin, T. J., Wolf, D. A. andSpaulding, G. F. (1992): ‘Responses of gravity levels variations on the NASA/JSC bioreactor system,’The Physiologist,35, (1), pp. S49–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Granet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granet, C., Laroche, N., Vico, L. et al. Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med. Biol. Eng. Comput. 36, 513–519 (1998). https://doi.org/10.1007/BF02523224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523224

Keywords

Navigation