Skip to main content

Advertisement

Log in

Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Physiological models have demonstrated that cells undergo a cyclic regimen of hydrostatic compression and fluid shear stress within the lacunar-canalicular porosity of bone. A new modular bioreactor was designed to incorporate both perfusion fluid flow and hydrostatic compression in an effort to more accurately simulate the mechanical loading and stress found in natural bone in vivo. The bioreactor design incorporated custom and off-the-shelf components to produce levels of mechanical stimuli relevant to the physiologic range, including hydrostatic compression exceeding 300 kPa and perfusion shear stress of 0.7 dyne/cm2. Preliminary findings indicated that the novel system facilitated the viable growth of cells on discrete tissue engineering scaffolds. The bioreactor has established an experimental platform for ongoing investigation of the interactive effect of perfusion fluid flow and hydrostatic compression on multiple cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

References

  1. Bancroft G. N., V. I. Sikavitsas, A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9(3):549–554, 2003

    Article  PubMed  CAS  Google Scholar 

  2. Bancroft G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 99(20):12600–12605, 2002

    Article  PubMed  CAS  Google Scholar 

  3. Basmadjian D. Mass transfer: principles and applications. New York: CRC Press, 2004

    Google Scholar 

  4. Basso N., J. N. M. Heersche. Characteristics of in vitro osteoblastic cell loading models. Bone 30(2):347–351, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Botchwey E. A., S. R. Pollack, E. M. Levine, C. T. Laurencin. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J. Biomed. Mater. Res. 55(2):242–253, 2001

    Article  PubMed  CAS  Google Scholar 

  6. Brown T. D. Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33(1):3–14, 2000

    Article  PubMed  CAS  Google Scholar 

  7. Burger E. H., J. Klein-Nulend. Mechanotransduction in bone–role of the lacuno-canalicular network. FASEB J. 13S:S101–12, 1999

    Google Scholar 

  8. Cartmell S. H., B. D. Porter, A. J. Garcia, R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9(6):1197–1203, 2003

    Article  PubMed  CAS  Google Scholar 

  9. Dahir G. A., Q. Cui, P. Anderson, C. Simon, C. Joyner, J. T. Triffitt, G. Balian. Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clinical Orthopaedics 379S:S134–145, 2000

    Google Scholar 

  10. Diduch D. R., M. R. Coe, C. Joyner, M. E. Owen, G. Balian. Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization. J. Bone Joint Surg. Am. 75(1):92–105, 1993

    PubMed  CAS  Google Scholar 

  11. Ducommun P., P. Ruffieux, M. Furter, I. Marison, U. von Stockar. A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. J. Biotechnol. 78(2):139–47, 2000

    Article  PubMed  CAS  Google Scholar 

  12. Ergun S. Fluid flow through packed columns. Chem. Eng. Prog. 48(2):89–94, 1952

    CAS  Google Scholar 

  13. Fournier R. L. Basic transport phenomena in biomedical engineering. Philadelphia: Taylor & Francis, 1999

    Google Scholar 

  14. Gramer M. J., D. M. Poeschl. Screening tool for hollow-fiber bioreactor process development. Biotechnol. Prog. 14(2):203–209, 1998

    Article  PubMed  CAS  Google Scholar 

  15. Halberstadt C., C. Austin, J. Rowley, C. Culberson, A. Loebsack, S. Wyatt, S. Coleman, L. Blacksten, K. Burg, D. Mooney, W. Holder Jr. A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng. 8(2):309–319, 2002

    Article  PubMed  CAS  Google Scholar 

  16. Ingram M., G. B. Techy, R. Saroufeem, O. Yazan, K. S. Narayan, T. J. Goodwin, G. F. Spaulding. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In vitro Cell. Dev. Biol. Anim. 33(6):459–466, 1997

    Article  PubMed  CAS  Google Scholar 

  17. Klein-Nulend J., A. Vanderplas, C. M. Semeins, N. E. Ajubi, J. A. Frangos, P. J. Nijweide, E. H. Burger. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9(5):441–445, 1995

    PubMed  CAS  Google Scholar 

  18. McGlohorn J. B., L. W. Grimes, S. S. Webster, K. J. Burg. Characterization of cellular carriers for use in injectable tissue-engineering composites. J Biomed Mater Res A 66(3):441–9, 2003

    Article  PubMed  CAS  Google Scholar 

  19. Nagatomi J., B. P. Arulanandam, D. W. Metzger, A. Meunier, R. Bizios. Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions. Tissue Eng. 7(6):717–728, 2001

    Article  PubMed  CAS  Google Scholar 

  20. Nagatomi J., B. P. Arulanandam, D. W. Metzger, A. Meunier, R. Bizios. Cyclic pressure affects osteoblast functions pertinent to osteogenesis. Ann. Biomed. Eng. 31(8):917–923, 2003

    Article  PubMed  Google Scholar 

  21. Nauman E. A., K. J. Risic, T. M. Keaveny, R. L. Satcher. Quantitative assessment of steady and pulsatile flow fields in a parallel plate flow chamber. Ann. Biomed. Eng. 27(2):194–199, 1999

    Article  PubMed  CAS  Google Scholar 

  22. Nauman E. A., R. L. Satcher, T. M. Keaveny, B. P. Halloran, D. D. Bikle. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J. Appl. Physiol. 90(5):1849–1854, 2001

    PubMed  CAS  Google Scholar 

  23. Nilsson J., A. Thorstensson. Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds. Acta Physiol. Scand. 129(1):107–14, 1987

    Article  PubMed  CAS  Google Scholar 

  24. Obradovic B., R. L. Carrier, G. Vunjak-Novakovic, L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63(2):197–205, 1999

    Article  PubMed  CAS  Google Scholar 

  25. Pazzano D., K. A. Mercier, J. M. Moran, S. S. Fong, D. D. DiBiasio, J. X. Rulfs, S. S. Kohles, L. J. Bonassar. Comparison of chondrogenesis in static and perfused bioreactor culture. Biotechnol. Prog. 16(5):893–896, 2000

    Article  PubMed  CAS  Google Scholar 

  26. Qiu Q. Q., P. Ducheyne, P. S. Ayyaswamy. 3D bone tissue engineered with bioactive microspheres in simulated microgravity. In vitro Cell. Dev. Biol. Anim. 37(3):157–165, 2001

    Article  PubMed  CAS  Google Scholar 

  27. Roelofsen J., J. Klein-Nulend, E. H. Burger. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech. 28(12):1493–1503, 1995

    Article  PubMed  CAS  Google Scholar 

  28. Rubin C. T., K. J. McLeod, S. D. Bain. Functional strains and cortical bone adaptation: epigenetic assurance of skeletal integrity. J. Biomech. 23(Suppl 1):43–54, 1990

    Article  PubMed  Google Scholar 

  29. Schakenraad J. M., H. J. Busscher, C. R. Wildevuur, J. Arends. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J. Biomed. Mater. Res. 20(6):773–84, 1986

    Article  PubMed  CAS  Google Scholar 

  30. Scheidegger A. E. The physics of flow through porous media. Toronto: University of Toronto Press, 1974

    Google Scholar 

  31. Sherwood T. K., R. L. Pigford, C. R. Wilke. Mass transfer. New York: McGraw-Hill, 1975

    Google Scholar 

  32. Sikavitsas V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. U. S. A. 100(25):14683–14688, 2003

    Article  PubMed  CAS  Google Scholar 

  33. Sodian R., T. Lemke, M. Loebe, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, R. Meyer, R. Hetzer. New pulsatile bioreactor for fabrication of tissue-engineered patches. J. Biomed. Mater. Res. 58(4):401–405, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka S. M., J. Li, R. L. Duncan, H. Yokota, D. B. Burr, C. H. Turner. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 36(1):73–80, 2003

    Article  PubMed  Google Scholar 

  35. Wang L., S. P. Fritton, S. Weinbaum, S. C. Cowin. On bone adaptation due to venous stasis. J. Biomech. 36(10):1439–51, 2003

    Article  PubMed  Google Scholar 

  36. Weinbaum S., S. C. Cowin, Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3):339–360, 1994

    Article  PubMed  CAS  Google Scholar 

  37. Zhang D., S. Weinbaum, S. C. Cowin. Estimates of the peak pressures in bone pore water. J. Biomech. Eng. 120(6):697–703, 1998

    Article  PubMed  CAS  Google Scholar 

  38. Zhang D. J., S. Weinbaum, S. C. Cowin. On the calculation of bone pore water pressure due to mechanical loading. Int. J. Solids Struct. 35(34–35):4981–4997, 1998

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF PECASE BES-0093805. The authors would like to thank Clemson University Machining and Technical Services for fabrication of the modular bioreactor components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen J. L. Burg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orr, D.E., Burg, K.J.L. Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications. Ann Biomed Eng 36, 1228–1241 (2008). https://doi.org/10.1007/s10439-008-9505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9505-0

Keywords

Navigation