Alvarez HM, Herrero OM, Silva RA, Hernández MA, Lanfranconi MP, Villalba MS (2019) Insights into the metabolism of oleaginous Rhodococcus spp. Appl Environ Microbiol 85(18):1–12. https://doi.org/10.1128/AEM.00498-19
Article
Google Scholar
Alvarez HM, Silva RA, Herrero M, Hernández MA, Villalba MS (2013) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:2119–2130. https://doi.org/10.1007/s00253-012-4360-1
CAS
Article
Google Scholar
Anthony WE, Carr RR, Delorenzo DM et al (2019) Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds. Biotechnol Biofuels 12(1):1–14. https://doi.org/10.1186/s13068-019-1535-3
CAS
Article
Google Scholar
Auffret M, Labbé D, Thouand G, Greer CW, Fayolle-Guichard F (2009) Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75(24):7774–7782. https://doi.org/10.1128/AEM.01117-09
CAS
Article
PubMed
PubMed Central
Google Scholar
Bell KS, Philp JC, Aw DWJ, Christofi N (1998) A review: the genus Rhodococcus. J Appl Microbiol 85(2):195–210. https://doi.org/10.1046/j.1365-2672.1998.00525.x
CAS
Article
PubMed
Google Scholar
Bugg TDH (2001) Oxygenases: mechanisms and structural motifs for O2 activation. Curr Opin Chem Biol 5(5):550–555. https://doi.org/10.1016/S1367-5931(00)00236-2
CAS
Article
PubMed
Google Scholar
Busch H, Hagedoorn PL, Hanefeld U (2019) Rhodococcus as a versatile biocatalyst in organic synthesis. Int J Mol Sci 20(19):1–36. https://doi.org/10.3390/ijms20194787
CAS
Article
Google Scholar
Cai C, Xu Z, Xu M, Cai M, Jin M (2020) Development of a Rhodococcus opacus cell factory for valorizing lignin to muconate. ACS Sustain Chem Eng 8(4):2016–2031. https://doi.org/10.1021/acssuschemeng.9b06571
CAS
Article
Google Scholar
Cappelletti M, Fedi S, Honda K, Ohtake H, Turner R, Zannoni D (2010) Monooxygenases involved in the n-alkanes metabolism by Rhodococcus sp. BCP1: molecular characterization and expression of alkB gene. J Biotechnol 150:259. https://doi.org/10.1016/j.jbiotec.2010.09.150
Cappelletti M, Fedi S, Zampolli J et al (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 167(9–10):766–773. https://doi.org/10.1016/j.resmic.2016.06.008
CAS
Article
PubMed
Google Scholar
Cappelletti M, Pinelli D, Fedi S, Zannoni D, Frascari D (2018) Aerobic co-metabolism of 1,1,2,2-tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis . J Chem Technol Biotechnol 93(1):155–165. https://doi.org/10.1002/jctb.5335
Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D (2020) Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 104(20):8567–8594. https://doi.org/10.1007/s00253-020-10861-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Cappelletti M, Presentato A, Milazzo G et al (2015) Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol 6:1–15. https://doi.org/10.3389/fmicb.2015.00393
Cappelletti M, Zampolli J, Di Gennaro P, Zannoni D (2019) Genomics of Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus second edition of the series Microbiology monographs. Springer, Heidelberg, p. 23–60. https://doi.org/10.1007/978-3-030-11461-9
Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH (2017) Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 18(1):1–16. https://doi.org/10.1186/s12864-017-3966-1
CAS
Article
Google Scholar
De Carvalho CCCR, Costa SS, Fernandes P, Couto I, Viveiros M (2014) Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front Physiol 5:1–13. https://doi.org/10.3389/fphys.2014.00133
DeLorenzo DM, Henson WR, Moon TS (2017) Development of chemical and metabolite sensors for Rhodococcus opacus PD630. ACS Synth Biol 6:1973–1978. https://doi.org/10.1021/acssynbio.7b00192
CAS
Article
PubMed
Google Scholar
DeLorenzo DM, Moon TS (2019) Construction of genetic logic gates based on the T7 RNA polymerase expression system in Rhodococcus opacus PD630. ACS Synth Biol 8:1921–1930. https://doi.org/10.1021/acssynbio.9b00213
CAS
Article
PubMed
Google Scholar
DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS (2018) Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth Biol 7:727–738. https://doi.org/10.1021/acssynbio.7b00416
CAS
Article
PubMed
Google Scholar
Desomer J, Dhaese P, Van Montagu M (1990) Transformation of Rhodococcus fascians by high-voltage electroporation and development of R. fascians cloning vectors. Appl Environ Microbiol 56(9):2818–2825. https://doi.org/10.1128/aem.56.9.2818-2825.1990
Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Fact 12(1):1–17. https://doi.org/10.1186/1475-2859-12-64
Article
Google Scholar
Duran R (1998) New shuttle vectors for Rhodococcus sp. R312 (formerly Brevibacterium sp. R312), a nitrile hydratase producing strain. J Basic Microbiol 38(2):101–106
Gatti DL, Palfey BA, Lah MS, Entsch B, Massey V, Ballou DP, Ludwig ML (1994) The mobile flavin of 4-OH benzoate hydroxylase. Science 266(5182):110–4. https://doi.org/10.1126/science.7939628
van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7(3):255–261. https://doi.org/10.1016/j.mib.2004.04.001
CAS
Article
PubMed
Google Scholar
Guevara G, Flores YO, De Las Heras LF, Perera J, Navarro Llorens JM (2019) Metabolic engineering of Rhodococcus ruber Chol-4: a cell factory for testosterone production. PLoS One 14(7). https://doi.org/10.1371/journal.pone.0220492
Henson WR, Campbell T, DeLorenzo DM, Gao Y, Berla B, Kim SJ, Foston M, Moon TS, Dantas G (2018) Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus. Metab Eng 49:69–83. https://doi.org/10.1016/j.ymben.2018.06.009
CAS
Article
PubMed
Google Scholar
Hernández MA, Alvarez HM (2019) Increasing lipid production using an NADP+-dependent malic enzyme from Rhodococcus jostii. Microbiol (united Kingdom) 165(1):4–14. https://doi.org/10.1099/mic.0.000736
CAS
Article
Google Scholar
Hernández MA, Arabolaza A, Rodríguez E, Gramajo H, Alvarez HM (2013) The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol 97(5):2119–2130. https://doi.org/10.1007/s00253-012-4360-1
CAS
Article
PubMed
Google Scholar
Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99(5):2191–2207. https://doi.org/10.1007/s00253-014-6002-2
CAS
Article
PubMed
Google Scholar
Hernández MA, Gleixner G, Sachse D, Alvarez HM (2017) Carbon allocation in Rhodococcus jostii RHA1 in response to disruption and overexpression of nlpR regulatory gene, based on 13C-labeling analysis. Front Microbiol 8:1–11. https://doi.org/10.3389/fmicb.2017.01992
Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:1–13. https://doi.org/10.1186/1471-2164-9-600
CAS
Article
Google Scholar
Hetzler S, Steinbüchel A (2013) Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79:3122–3125. https://doi.org/10.1128/AEM.03678-12
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang L, Zhao L, Zan X, Song Y, Ratledge C (2016) Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases. Biotechnol Lett 38(6):999–1008. https://doi.org/10.1007/s10529-016-2072-9
CAS
Article
PubMed
Google Scholar
Hwangbo M, Chu KH (2020) Recent advances in production and extraction of bacterial lipids for biofuel production. Sci Total Environ 734. https://doi.org/10.1016/j.scitotenv.2020.139420
Ivshina IB, Tyumina EA, Kuzmina MV, Vikhareva EV (2019) Features of diclofenac biodegradation by Rhodococcus ruber IEGM 346. Sci Rep 9(1):1–13. https://doi.org/10.1038/s41598-019-45732-9
CAS
Article
Google Scholar
Jiao S, Yu H, Shen Z (2018) Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. N Biotechnol 44:41–49. https://doi.org/10.1016/j.nbt.2018.04.005
CAS
Article
PubMed
Google Scholar
Kalscheuer R, Arenskötter M, Steinbüchel A (1999) Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids). Appl Microbiol Biotechnol 52(4):508–515. https://doi.org/10.1007/s002530051553
CAS
Article
PubMed
Google Scholar
Kim HM, Chae TU, Choi SY, Kim WJ, Lee SY (2019) Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat Chem Biol 15(7):721–729. https://doi.org/10.1038/s41589-019-0295-5
CAS
Article
PubMed
Google Scholar
Kis Á, Laczi K, Zsíros S et al (2017) Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil. Acta Microbiol Immunol Hung 64(4):463–482. https://doi.org/10.1556/030.64.2017.037
Kis Á, Laczi K, Zsíros S, Rákhely G, Perei K (2015) Biodegradation of animal fats and vegetable oils by Rhodococcus erythropolis PR4. Int Biodeterior Biodegrad 105:114–119. https://doi.org/10.1016/j.ibiod.2015.08.015
CAS
Article
Google Scholar
Kurosawa K, Laser J, Sinskey AJ (2015a) Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels 8:76. https://doi.org/10.1186/s13068-015-0258-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurosawa K, Plassmeier J, Kalinowski J, Rückert C, Sinskey AJ (2015b) Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Metab Eng 30:89–95. https://doi.org/10.1016/j.ymben.2015.04.006
CAS
Article
PubMed
Google Scholar
Kurosawa K, Radek A, Plassmeier JK, Sinskey AJ (2015c) Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels. Biotechnol Biofuels 8:31. https://doi.org/10.1186/s13068-015-0209-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134. https://doi.org/10.1186/1754-6834-6-134
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurosawa K, Wewetzer SJ, Sinskey AJ (2014) Triacylglycerol production from corn stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels. J Microbial Biochem Technol 6:254–259. https://doi.org/10.4172/1948-5948.1000153
Article
Google Scholar
Laczi K, Kis Á, Horváth B et al (2015) Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 99(22):9745–9759. https://doi.org/10.1007/s00253-015-6936-z
CAS
Article
PubMed
Google Scholar
Larcher S, Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91(1):211–218. https://doi.org/10.1007/s00253-011-3257-8
CAS
Article
PubMed
Google Scholar
Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus - masters of catabolic versatility. Curr Opin Biotechnol 16(3 SPEC. ISS.):282–290. https://doi.org/10.1016/j.copbio.2005.04.007
Liang Y, Jiao S, Wang M, Yu H, Shen Z (2020) A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. Metab Eng 57:13–22. https://doi.org/10.1016/j.ymben.2019.10.003
CAS
Article
PubMed
Google Scholar
MacEachran DP, Sinskey AJ (2013) The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Fact 12(1):1. https://doi.org/10.1186/1475-2859-12-104
CAS
Article
Google Scholar
Mandal B, Prabhu A, Pakshirajan K, Veeranki Dasu V (2019) Construction and parameters modulation of a novel variant Rhodococcus opacus BM985 to achieve enhanced triacylglycerol-a biodiesel precursor, using synthetic dairy wastewater. Process Biochem 84(June):9–21. https://doi.org/10.1016/j.procbio.2019.05.031
CAS
Article
Google Scholar
Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2008) Biodegradation potential of the genus Rhodococcus. Environ Int 35(1):162–177. https://doi.org/10.1016/j.envint.2008.07.018
CAS
Article
PubMed
Google Scholar
Mitani Y, Nakashima N, Sallam KI, Toriyabe T, Kondo K, Tamura T (2006) Advances in the development of genetic tools for the genus Rhodococcus. Actinomycetologica 20(2):55–61. https://doi.org/10.3209/saj.20.55
CAS
Article
Google Scholar
O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987. https://doi.org/10.1016/j.cell.2015.05.019
CAS
Article
PubMed
PubMed Central
Google Scholar
Orro A, Cappelletti M, D’Ursi P et al (2015) Genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 10(10):1–41. https://doi.org/10.1371/journal.pone.0139467
Pátek M, Grulich M, Nešvera J (2021) Stress response in Rhodococcus strains. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2021.107698
Article
PubMed
Google Scholar
Presentato A, Cappelletti M, Sansone A et al (2018a) Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources. Front Microbiol 9(APR):1–15. https://doi.org/10.3389/fmicb.2018.00672
Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2016) Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Factories 15:204. https://doi.org/10.1186/s12934-016-0602-8
CAS
Article
Google Scholar
Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018b) Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnol 41:1–8. https://doi.org/10.1016/j.nbt.2017.11.002
CAS
Article
Google Scholar
Presentato A, Piacenza E, Darbandi A, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ (2018c) Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Sci Rep 8:3923. https://doi.org/10.1038/s41598-018-22320-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Presentato A, Piacenza E, Turner RJ, Zannoni D, Cappelletti M (2020) Processing of metals and metalloids by actinobacteria: cell resistance mechanisms and synthesis of metal(loid)-based nanostructures. Microorganisms 8(12):1–37. https://doi.org/10.3390/microorganisms8122027
CAS
Article
Google Scholar
Roell GW, Carr RR, Campbell T et al (2019) A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metab Eng 55(June):120–130. https://doi.org/10.1016/j.ymben.2019.06.013
CAS
Article
PubMed
Google Scholar
Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM (2019) The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 56(August):1–16. https://doi.org/10.1016/j.ymben.2019.08.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68(3):501–517. https://doi.org/10.1128/MMBR.68.3.501-517.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Sekizaki T, Tanoue T, Osaki M, Shimoji Y, Tsubaki S, Takai S (1998) Improved electroporation of Rhodococcus equi. J Vet Med Sci 60(2):277–279. https://doi.org/10.1292/jvms.60.277
CAS
Article
PubMed
Google Scholar
Shao Z, Dick WA, Behki RM (1995) An improved Eschehchia coli‐Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett Appl Microbiol 21(4):261–266. https://doi.org/10.1111/j.1472-765X.1995.tb01056.x
Singer ME, Finnerty WR (1988) Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. J Bacteriol 170(2):638–645. https://doi.org/10.1128/jb.170.2.638-645.1988
CAS
Article
PubMed
PubMed Central
Google Scholar
Spence EM, Calvo-Bado L, Mines P, Bugg TDH (2021) Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin. Microb Cell Fact 20(1):1–12. https://doi.org/10.1186/s12934-020-01504-z
CAS
Article
Google Scholar
Tajparast M, Frigon D (2015) Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 9:43. https://doi.org/10.1186/s12918-015-0190-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Tajparast M, Frigon D (2018) Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis. PLoS One 13
Tyumina EA, Bazhutin GA, Vikhareva EV, Selyaninov AA, Ivshina IB (2019) Diclofenac as a factor in the change of Rhodococcus metabolism. IOP Conf Ser Mater Sci Eng 487(1). https://doi.org/10.1088/1757-899X/487/1/012027
Weidhaas JL, Chang DPY, Schroeder ED (2009) Biodegradation of nitroaromatics and RDX by isolated Rhodococcus opacus. J Environ Eng 135(10):1025–1031. https://doi.org/10.1061/(asce)ee.1943-7870.0000072
CAS
Article
Google Scholar
Xie S, Sun S, Lin F et al (2019) Mechanism-guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Adv Sci 6(13). https://doi.org/10.1002/advs.201801980
Xiong X, Lian J, Yu X, Garcia-Perez M, Chen S (2016a) Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. J Ind Microbiol Biotechnol 43:1551–1560. https://doi.org/10.1007/s10295-016-1832-9
CAS
Article
PubMed
Google Scholar
Xiong X, Wang X, Chen S (2012) Engineering of a xylose metabolic pathway in Rhodococcus spp. strains. Appl Environ Microbiol 78:5483–5491. https://doi.org/10.1128/AEM.08022-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Xiong X, Wang X, Chen S (2016b) Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production. J Ind Microbiol Biotechnol 43:1017–1025. https://doi.org/10.1007/s10295-016-1778-y
CAS
Article
PubMed
Google Scholar
Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44:2240–2254. https://doi.org/10.1093/nar/gkw055
CAS
Article
PubMed
PubMed Central
Google Scholar