Skip to main content
Log in

Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Oleaginous strains of Rhodococcus including R. jostii RHA1 have attracted considerable attention due to their ability to accumulate triacylglycerols (TAGs), robust growth properties and genetic tractability. In this study, a novel metabolic pathway was introduced into R. jostii by heterogenous expression of the well-characterized gene, lgk encoding levoglucosan kinase from Lipomyces starkeyi YZ-215. This enables the recombinant R. jostii RHA1 to produce TAGs from the anhydrous sugar, levoglucosan, which can be generated efficiently as the major molecule from the pyrolysis of cellulose. The recombinant R. jostii RHA1 could grow on levoglucosan as the sole carbon source, and the consumption rate of levoglucosan was determined. Furthermore, expression of one more copy of lgk increased the enzymatic activity of LGK in the recombinant. However, the growth performance of the recombinant bearing two copies of lgk on levoglucosan was not improved. Although expression of lgk in the recombinants was not repressed by the glucose present in the media, glucose in the sugar mixture still affected consumption of levoglucosan. Under nitrogen limiting conditions, lipid produced from levoglucosan by the recombinant bearing lgk was up to 43.54 % of the cell dry weight, which was comparable to the content of lipid accumulated from glucose. This work demonstrated the technical feasibility of producing lipid from levoglucosan, an anhydrosugar derived from the pyrolysis of lignocellulosic materials, by the genetically modified rhodococci strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723

    Article  CAS  PubMed  Google Scholar 

  2. Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in Rhodococci. Sci Rep 6:24985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Araki N, Suzuki T, Miyauchi K, Kasai D, Masai E, Fukuda M (2011) Identification and characterization of uptake systems for glucose and fructose in Rhodococcus jostii RHA1. J Mol Microbiol Biotechnol 20:125–136

    Article  CAS  PubMed  Google Scholar 

  4. Costa JSD, Herrero OM, Alvarez HM, Leichert L (2015) Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1. Microbiology 161:593–610

    Article  CAS  Google Scholar 

  5. Dai J, Yu Z, He Y, Zhang L, Bai Z, Dong Z, Du Y, Zhang H (2009) Cloning of a novel levoglucosan kinase gene from Lipomyces starkeyi and its expression in Escherichia coli. World J Microbiol Biotechnol 25:1589–1595

    Article  CAS  Google Scholar 

  6. Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21:1792–1815

    Article  CAS  Google Scholar 

  7. Fei Q, Wewetzer SJ, Kurosawa K, Rha C, Sinskey AJ (2015) High-cell-density cultivation of an engineered Rhodococcus opacus strain for lipid production via co-fermentation of glucose and xylose. Process Biochem 50:500–506

    Article  CAS  Google Scholar 

  8. Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99:2191–2207

    Article  PubMed  Google Scholar 

  9. Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genom 9:1

    Article  Google Scholar 

  10. Hetzler S, Steinbüchel A (2013) Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79:3122–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hollinshead WD, Henson WR, Abernathy M, Moon TS, Tang YJ (2016) metabolic analysis of Rhodococcus opacus PD630 via parallel 13C metabolite fingerprinting. ‎Biotechnol Bioeng 113:91–100

    Article  CAS  PubMed  Google Scholar 

  13. Jarboe LR, Wen Z, Choi D, Brown RC (2011) Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Appl Microbiol Biotechnol 91:1519–1523

    Article  CAS  PubMed  Google Scholar 

  14. Jin Y-S, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kersten S, Garcia-Perez M (2013) Recent developments in fast pyrolysis of ligno-cellulosic materials. Curr Opin Biotechnol 24:414–420

    Article  CAS  PubMed  Google Scholar 

  16. Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147:212–218

    Article  CAS  PubMed  Google Scholar 

  17. Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol 102:8318–8322

    Article  CAS  PubMed  Google Scholar 

  18. Lian J, Garcia-Perez M, Chen S (2013) Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol 133:183–189

    Article  CAS  PubMed  Google Scholar 

  19. Linger JG, Hobdey SE, Franden MA, Fulk EM, Beckham GT (2016) Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440. Metab Eng Commun 3:24–29

    Article  Google Scholar 

  20. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TD (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156

    Article  CAS  PubMed  Google Scholar 

  22. Tajparast M, Frigon D (2015) Genome-scale metabolic model of Rhodococcus jostii RHA1 (i MT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 9:1

    Article  CAS  Google Scholar 

  23. Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169

    Article  CAS  PubMed  Google Scholar 

  24. Villalba MS, Alvarez HM (2014) Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology 160:1523–1532

    Article  CAS  PubMed  Google Scholar 

  25. Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    Article  CAS  PubMed  Google Scholar 

  26. Wang G, Xiong X, Ghogare R, Wang P, Meng Y, Chen S (2016) Exploring fatty alcohol-producing capability of Yarrowia lipolytica. Biotechnol Biofuels 9:1

    Article  Google Scholar 

  27. Wei Z, Zeng G, Huang F, Kosa M, Sun Q, Meng X, Huang D, Ragauskas AJ (2015) Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Appl Microbiol Biotechnol 99:7369–7377

    Article  CAS  PubMed  Google Scholar 

  28. Wolinski H, Kohlwein SD (2008) Microscopic analysis of lipid droplet metabolism and dynamics in yeast. Membr Traffick 457:151–163

    Article  CAS  Google Scholar 

  29. Xiong X, Wang X, Chen S (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78:5483–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiong X, Wang X, Chen S (2016) Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production. J Ind Microbiol Biotechnol 43:1017–1025

    Article  CAS  PubMed  Google Scholar 

  31. Xiong X, Xing J, Li X, Bai X, Li W, Li Y, Liu H (2007) Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol 73:2394–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44:2240–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu X, Zheng Y, Xiong X, Chen S (2014) Co-utilization of glucose, xylose and cellobiose by the oleaginous yeast Cryptococcus curvatus. Biomass Bioenergy 71:340–349

    Article  CAS  Google Scholar 

  34. Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48:87–92

    Article  CAS  Google Scholar 

  35. Zheng Y, Yu X, Li T, Xiong X, Chen S (2014) Induction of D-xylose uptake and expression of NAD (P) H-linked xylose reductase and NADP+-linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana. Biotechnol Biofuels 7:1

    Article  Google Scholar 

  36. Zhou S, Mourant D, Lievens C, Wang Y, Li C-Z, Garcia-Perez M (2013) Effect of sulfuric acid concentration on the yield and properties of the bio-oils obtained from the auger and fast pyrolysis of Douglas Fir. Fuel 104:536–546

    Article  CAS  Google Scholar 

  37. Zhuang X, Zhang H, Tang J (2001) Levoglucosan kinase involved in citric acid fermentation by Aspergillus niger CBX-209 using levoglucosan as sole carbon and energy source. Biomass Bioenergy 21:53–60

    Article  CAS  Google Scholar 

  38. Zhuang X, Zhang H, Yang J, Qi H (2001) Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresour Technol 79:63–66

    Article  CAS  PubMed  Google Scholar 

  39. Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236:302–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lindsay D. Eltis (Department of Microbiology and Immunology, University of British Columbia) for the gift of R. jostii RHA1. We also acknowledge FMIC at WSU for providing us with the technical support and resource of the confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Lian, J., Yu, X. et al. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. J Ind Microbiol Biotechnol 43, 1551–1560 (2016). https://doi.org/10.1007/s10295-016-1832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1832-9

Keywords

Navigation