Skip to main content

Advertisement

Log in

Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The oleaginous bacterium, Rhodococcus jostii RHA1 has attracted considerable attention due to its capability to accumulate significant levels of triacylglycerol as renewable hydrocarbon. To enable the strain to utilize arabinose derived from lignocellulosic biomass, the metabolic pathway of L-arabinose utilization was introduced into R. jostii RHA1 by heterogenous expression of the operon, araBAD from Escherichia coli. The results showed that recombinant bearing araBAD could grow on L-arabinose as the sole carbon source, and additional expression of araFGH encoding the arabinose transporter from E. coli could improve the cell biomass yield from high contents of arabinose. We further increased the content of lipid produced from arabinose in the recombinants from 47.9 to 56.8 % of the cell dry weight (CDW) by overexpression of a gene, atf1 encoding a diglyceride acyltransferase from R. opacus PD630. This work demonstrated the feasibility of producing lipid from arabinose by genetic modification of the rhodococci strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvarez AF, Alvarez HM, Kalscheuer R, Wältermann M, Steinbüchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 154:2327

    Article  CAS  PubMed  Google Scholar 

  2. Dische Z, Borenfreund E (1951) A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem 192:583–587

    CAS  PubMed  Google Scholar 

  3. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  PubMed  Google Scholar 

  4. Ha SJ, Galazka JM, Rin Kim S, Choi JH, Yang X, Seo JH, Louise Glass N, Cate JHD, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci 108:504

    Article  CAS  PubMed  Google Scholar 

  5. Hendrickson W, Flaherty C, Molz L (1992) Sequence elements in the Escherichia coli araFGH promoter. J Bacteriol 174:6862–6871

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Heo GY, Kim WC, Joo GJ, Kwak YY, Shin JH, Roh DH, Park HD, Rhee IK (2008) Deletion of xylR gene enhances expression of xylose isomerase in Streptomyces lividans TK24. J Microbiol Biotechnol 18:837–844

    CAS  PubMed  Google Scholar 

  7. Hernández M, Mohn W, Martínez E, Rost E, Alvarez A, Alvarez H (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genom 9:600

    Article  Google Scholar 

  8. Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach ALB, Ghiviriga I, Dancel C (2011) Comparative and Functional Genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hollinshead WD, Henson WR, Abernathy M, Moon TS, Tang YJ (2016) Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel 13C-metabolite fingerprinting. Biotechnol Bioeng 113:91–100

    Article  CAS  PubMed  Google Scholar 

  10. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337

    Article  CAS  PubMed  Google Scholar 

  11. Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD (2001) Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147:3241–3247

    Article  CAS  PubMed  Google Scholar 

  12. Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 93:891–900

    Article  CAS  PubMed  Google Scholar 

  13. Kreuzer P, Gartner D, Allmansberger R, Hillen W (1989) Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol 171:3840

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147:212–218

    Article  CAS  PubMed  Google Scholar 

  15. Kurosawa K, Plassmeier J, Kalinowski J, Rückert C, Sinskey AJ (2015) Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Metab Eng 30:89–95

    Article  CAS  PubMed  Google Scholar 

  16. Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee N, Gielow W, Martin R, Hamilton E, Fowler A (1986) The organization of the araBAD operon of Escherichia coli. Gene 47:231–244

    Article  CAS  PubMed  Google Scholar 

  18. Mahalik S, Sharma AK, Mukherjee KJ (2014) Genome engineering for improved recombinant protein expression in Escherichia coli. Microb Cell Fact 13:1

    Article  Google Scholar 

  19. McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci 103:15582

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meijnen JP, De Winde JH, Ruijssenaars HJ (2008) Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Appl Environ Microbiol 74:5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patrick JW, Lee N (1968) Purification and properties of an L-arabinose isomerase from Escherichia coli. J Biol Chem 243:4312–4318

    CAS  PubMed  Google Scholar 

  22. Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12:446–454

    Article  CAS  PubMed  Google Scholar 

  23. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Eng 15:1–9

    Article  CAS  Google Scholar 

  24. Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    Article  CAS  PubMed  Google Scholar 

  25. Wang B, Rezenom YH, Cho K-C, Tran JL, Lee DG, Russell DH, Gill JJ, Young R, Chu K-H (2014) Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresour Technol 161:162–170

    Article  CAS  PubMed  Google Scholar 

  26. Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  CAS  PubMed  Google Scholar 

  27. Xiaochao X, Jianmin X, Xin L, Xuejing B, Wangliang L, Yuguang L, Huizhou L (2007) Enhancement of biodesulfurization in two-liquid systems by heterogenous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol 73:2394–2397

    Article  Google Scholar 

  28. Xiong X, Wang X, Chen S (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78:5483–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134–6140

    Article  CAS  PubMed  Google Scholar 

  30. Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, Yuan JS (2016) Synergistic enzymatic and microbial lignin conversion. Green Chem. doi:10.1039/C5GC01955A

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Lindsay D. Eltis (Department of Microbiology & Immunology, University of British Columbia) for the gift of R. jostii RHA1, and Dr. Anthony Sinskey (Department of Biology, Massachusetts Institute of Technology) for the gift of R. opacus PD630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Wang, X. & Chen, S. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production. J Ind Microbiol Biotechnol 43, 1017–1025 (2016). https://doi.org/10.1007/s10295-016-1778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1778-y

Keywords

Navigation