Skip to main content
Log in

Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rhodococcus erythropolis PR4 is able to degrade diesel oil, normal-, iso- and cycloparaffins and aromatic compounds. The complete DNA content of the strain was previously sequenced and numerous oxygenase genes were identified. In order to identify the key elements participating in biodegradation of various hydrocarbons, we performed a comparative whole transcriptome analysis of cells grown on hexadecane, diesel oil and acetate. The transcriptomic data for the most prominent genes were validated by RT-qPCR. The expression of two genes coding for alkane-1-monooxygenase enzymes was highly upregulated in the presence of hydrocarbon substrates. The transcription of eight phylogenetically diverse cytochrome P450 (cyp) genes was upregulated in the presence of diesel oil. The transcript levels of various oxygenase genes were determined in cells grown in an artificial mixture, containing hexadecane, cycloparaffin and aromatic compounds and six cyp genes were induced by this hydrocarbon mixture. Five of them were not upregulated by linear and branched hydrocarbons. The expression of fatty acid synthase I genes was downregulated by hydrocarbon substrates, indicating the utilization of external alkanes for fatty acid synthesis. Moreover, the transcription of genes involved in siderophore synthesis, iron transport and exopolysaccharide biosynthesis was also upregulated, indicating their important role in hydrocarbon metabolism. Based on the results, complex metabolic response profiles were established for cells grown on various hydrocarbons. Our results represent a functional annotation of a rhodococcal genome, provide deeper insight into molecular events in diesel/hydrocarbon utilization and suggest novel target genes for environmental monitoring projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn SK, Cuthbertson L, Nodwell JR (2012) Genome context as a predictive tool for identifying regulatory targets of the TetR family transcriptional regulators. PLoS ONE 7:e50562. doi:10.1371/journal.pone.0050562

    Article  CAS  PubMed  Google Scholar 

  • Alberts JF, Engelbrecht Y, Steyn PS, Holzapfel WH, van Zyl WH (2006) Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int J Food Microbiol 109:121–126. doi:10.1016/j.ijfoodmicro.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  • Bellamine A, Mangla AT, Nes WD, Waterman MR (1999) Characterization and catalytic properties of the sterol 14 α-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci 96:8937–8942

    Article  CAS  PubMed  Google Scholar 

  • Bergeron RJ, Singh S, Bharti N (2011) Synthesis of heterobactins A and B and Nocardia heterobactin. Tetrahedron 67:3163–3169. doi:10.1016/j.tet.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  • Bosello M, Zeyadi M, Kraas FI, Linne U, Xie X, Marahiel MA (2013) Structural characterization of the heterobactin siderophores from Rhodococcus erythropolis PR4 and elucidation of their biosynthetic machinery. J Nat Prod 76:2282–2290. doi:10.1021/np4006579

    Article  CAS  PubMed  Google Scholar 

  • Cantaloube S, Veyron-Churlet R, Haddache N, Daffé M, Zerbib D (2011) The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes. PLoS ONE 6:e29564. doi:10.1371/journal.pone.0029564

    Article  CAS  PubMed  Google Scholar 

  • Cappelletti M, Fedi S, Frascari D, Ohtake H, Turner RJ, Zannoni D (2011) Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Environ Microbiol 77:1619–1627. doi:10.1128/AEM.01987-10

    Article  CAS  PubMed  Google Scholar 

  • Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, Okamoto S, Jacobs WR Jr, Eltis LD, Mohn WW (2009) Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. J Biol Chem 284:35534–35542. doi:10.1074/jbc.M109.072132

    Article  CAS  PubMed  Google Scholar 

  • Carran CJ, Jordan M, Drechsel H, Schmid DG, Winkelmann G (2001) Heterobactins: a new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals Int J Role Met Ions Biol Biochem Med 14:119–125

    Article  CAS  Google Scholar 

  • Choi KH, Kremer L, Besra GS, Rock CO (2000) Identification and substrate specificity of β -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J Biol Chem 275:28201–28207. doi:10.1074/jbc.M003241200

    CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726. doi:10.1007/s00253-005-1932-3

    Article  PubMed  Google Scholar 

  • de Carvalho CCCR, Parreño-Marchante B, Neumann G, da Fonseca MMR, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388. doi:10.1007/s00253-004-1750-z

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320. doi:10.1007/s00253-008-1809-3

    Article  CAS  PubMed  Google Scholar 

  • Demnerova K, Macková M, Jecna K, Stiborova H, Lovecka P, Dudková V, Zlámalíková J, Macek T (2008) Risks and benefits of biological cleaning of the environment polluted with halogenated compounds. J Biotechnol 136:S678. doi:10.1016/j.jbiotec.2008.07.1572

    Article  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci 104:5602–5607. doi:10.1073/pnas.0609650104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li Y, Zeng R, Khaitovich P (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 10:161. doi:10.1186/1471-2164-10-161

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuentes S, Méndez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98:4781–4794. doi:10.1007/s00253-014-5684-9

    Article  CAS  PubMed  Google Scholar 

  • Fülöp A, Béres R, Tengölics R, Rákhely G, Kovács KL (2012) Relationship between PHA and hydrogen metabolism in the purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS. Int J Hydrog Energy 37:4915–4924. doi:10.1016/j.ijhydene.2011.12.019

    Article  Google Scholar 

  • Gande R, Gibson KJC, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L (2004) Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacteriaceae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 279:44847–44857. doi:10.1074/jbc.M408648200

    Article  CAS  PubMed  Google Scholar 

  • Gavalda S, Léger M, van der Rest B, Stella A, Bardou F, Montrozier H, Chalut C, Burlet-Schiltz O, Marrakchi H, Daffé M, Quémard A (2009) The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J Biol Chem 284:19255–19264. doi:10.1074/jbc.M109.006940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves ER, Hara H, Miyazawa D, Davies JE, Eltis LD, Mohn WW (2006) Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72:6183–6193. doi:10.1128/AEM.00947-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Hagelueken G, Wiehlmann L, Adams TM, Kolmar H, Heinz DW, Tümmler B, Schubert W-D (2007) Crystal structure of the electron transfer complex rubredoxin-rubredoxin reductase of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:12276–12281. doi:10.1073/pnas.0702919104

    Article  PubMed  PubMed Central  Google Scholar 

  • Hara H, Eltis LD, Davies JE, Mohn WW (2007) Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1. J Bacteriol 189:1641–1647. doi:10.1128/JB.01322-06

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79:7082–7090. doi:10.1128/AEM.01664-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer A, Mody K, Jha B (2006) Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microb Technol 38:220–222. doi:10.1016/j.enzmictec.2005.06.007

    Article  CAS  Google Scholar 

  • Kikuchi S, Rainwater DL, Kolattukudy PE (1992) Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Arch Biochem Biophys 295:318–326

    Article  CAS  PubMed  Google Scholar 

  • Kis Á, Laczi K, Hajdú A, Szilágyi Á, Rákhely G, Perei K (2013) Efficient removal of unctuous wastes from wastewater. Int J Biosci Biochem Bioinform 3:395–397. doi:10.7763/IJBBB.2013.V3.241

    CAS  Google Scholar 

  • Kolouchová I, Schreiberová O, Masák J, Sigler K, Řezanka T (2012) Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography–tandem mass spectrometry. Folia Microbiol (Praha) 57:473–483. doi:10.1007/s12223-012-0156-z

    Article  Google Scholar 

  • Komukai-Nakamura S, Sugiura K, Yamauchi-Inomata Y, Toki H, Venkateswaran K, Yamamoto S, Tanaka H, Harayama S (1996) Construction of bacterial consortia that degrade Arabian light crude oil. J Ferment Bioeng 82:570–574. doi:10.1016/S0922-338X(97)81254-8

    Article  CAS  Google Scholar 

  • Kosono S, Maeda M, Fuji F, Arai H, Kudo T (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ Microbiol 63:3282–3285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kriszt R, Krifaton C, Szoboszlay S, Cserháti M, Kriszt B, Kukolya J, Czéh A, Fehér-Tóth S, Török L, Szőke Z, Kovács KJ, Barna T, Ferenczi S (2012) A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain. PLoS ONE 7:e43608. doi:10.1371/journal.pone.0043608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Külahoglu C, Bräutigam A (2014) Quantitative transcriptome analysis using RNA-seq. In: Staiger D (ed) Plant circadian networks. Springer, New York, pp 71–91

    Chapter  Google Scholar 

  • Li C, Zhou Z-X, Jia X-Q, Chen Y, Liu J, Wen J-P (2013) Biodegradation of crude oil by a newly isolated strain Rhodococcus sp. JZX-01. Appl Biochem Biotechnol 171:1715–1725. doi:10.1007/s12010-013-0451-4

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lo Piccolo L, De Pasquale C, Fodale R, Puglia AM, Quatrini P (2011) Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol 77:1204–1213. doi:10.1128/AEM.02180-10

    Article  PubMed  Google Scholar 

  • Maeda M, Chung SY, Song E, Kudo T (1995) Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl Environ Microbiol 61:549–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517. doi:10.1101/gr.079558.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, Han J, Holman H-YN, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill. ISME J 6:1715–1727. doi:10.1038/ismej.2012.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinnon RA, Sorich MJ, Ward MB (2008) Cytochrome P450 part1: multiplicity and function. J Pharm Pract Res 38:55–57

    Article  Google Scholar 

  • Moody SC, Loveridge EJ (2014) CYP105—diverse structures, functions and roles in an intriguing family of enzymes in Streptomyces. J Appl Microbiol 117:1549–1563. doi:10.1111/jam.12662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naether DJ, Slawtschew S, Stasik S, Engel M, Olzog M, Wick LY, Timmis KN, Heipieper HJ (2013) Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach. Appl Environ Microbiol 79:4282–4293. doi:10.1128/AEM.00694-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy I, Schoofs G, De Schrijver A, Vanderleyden J, De Mot R (1997) New method for RNA isolation from actinomycetes: application to the transcriptional analysis of the alcohol oxidoreductase gene thcE in Rhodococcus and Mycobacterium. Lett Appl Microbiol 25:75–79

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL (2014a) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968. doi:10.1038/srep04968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Liang JL, Fang H, Tang YQ, Wu XL (2014b) Characterization of a CYP153 alkane hydroxylase gene in a Gram-positive Dietzia sp. DQ12-45-1b and its “team role” with alkW1 in alkane degradation. Appl Microbiol Biotechnol 98:163–173. doi:10.1007/s00253-013-4821-1

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. doi:10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593. doi:10.1016/j.tips.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  • Perry MB, MacLean LL, Patrauchan MA, Vinogradov E (2007) The structure of the exocellular polysaccharide produced by Rhodococcus sp. RHA1. Carbohydr Res 342:2223–2229. doi:10.1016/j.carres.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  • Portevin D, De Sousa-D’Auria C, Houssin C, Grimaldi C, Chami M, Daffé M, Guilhot C (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 101:314–319. doi:10.1073/pnas.0305439101

    Article  CAS  PubMed  Google Scholar 

  • Procopio L, de Cassia Pereira e Silva M, van Elsas JD, Seldin L (2013) Transcriptional profiling of genes involved in n-hexadecane compounds assimilation in the hydrocarbon degrading Dietzia cinnamea P4 strain. Braz J Microbiol 44:633–641. doi:10.1590/S1517-83822013000200044

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773. doi:10.1128/JB.00072-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabirova JS, Becker A, Lünsdorf H, Nicaud J-M, Timmis KN, Golyshin PN (2011) Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes: Transcriptomic responses of Alcanivorax borkumensis. FEMS Microbiol Lett 319:160–168. doi:10.1111/j.1574-6968.2011.02279.x

    Article  CAS  PubMed  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450. doi:10.1016/j.biotechadv.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  • Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346. doi:10.1111/j.1462-2920.2005.00899.x

    Article  CAS  PubMed  Google Scholar 

  • Stratton HM, Brooks PR, Seviour RJ (1999) Analysis of the structural diversity of mycolic acids of Rhodococcus and Gordonia isolates from activated sludge foams by selective ion monitoring gas chromatography–mass spectrometry (SIM GC-MS). J Microbiol Methods 35:53–63

    Article  CAS  PubMed  Google Scholar 

  • Strnad H, Patek M, Fousek J, Szokol J, Ulbrich P, Nesvera J, Paces V, Vlcek C (2014) Genome sequence of Rhodococcus erythropolis strain CCM2595, a phenol derivative-degrading bacterium. Genome Announc 2:e00208–14–e00208–14. doi: 10.1128/genomeA.00208-14

  • Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702. doi:10.1128/AEM.03767-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Throne-Holst M, Markussen S, Winnberg A, Ellingsen TE, Kotlar H-K, Zotchev SB (2006) Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol 72:353–360. doi:10.1007/s00253-005-0262-9

    Article  CAS  PubMed  Google Scholar 

  • Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE 7:e40653. doi:10.1371/journal.pone.0040653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urai M, Yoshizaki H, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2007a) Structural analysis of an acidic, fatty acid ester-bonded extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342:933–942. doi:10.1016/j.carres.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Urai M, Yoshizaki H, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2007b) Structural analysis of mucoidan, an acidic extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342:927–932. doi:10.1016/j.carres.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  • Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21. doi:10.1007/s00253-006-0748-0

    Article  CAS  PubMed  Google Scholar 

  • Van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading Eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65. doi:10.1128/AEM.72.1.59-65.2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Vance DE, Mitsuhashi O, Bloch K (1973) Purification and properties of the fatty acid synthetase from Mycobacterium phlei. J Biol Chem 248:2303–2309

    CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi:10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:REVIEWS3003. doi:10.1186/gb-2000-1-6-reviews3003

    Google Scholar 

  • White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755. doi:10.1111/jam.12287

    Article  CAS  PubMed  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68. doi:10.1146/annurev.biochem.75.103004.142545

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR, Masson L, Whyte LG, Greer CW (2009) Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75:6258–6267. doi:10.1128/AEM.01029-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Huang Y, Harvey PR, Li H, Ren Y, Li J, Wang J, Yang H (2013) Isolation and characterization of carbendazim-degrading Rhodococcus erythropolis djl-11. PLoS One 8:e74810. doi:10.1371/journal.pone.0074810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Yates SP, Jia Z (2012) Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK. Philos Trans R Soc B Biol Sci 367:2656–2668. doi:10.1098/rstb.2011.0426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union and co-financed by the European Social Fund (grant agreement no.: TÁMOP-4.2.4.A/ 2-11/1-2012-0001 ‘National Excellence Program’, TÁMOP-4.1.1.C-12/1/KONV-2012-0012) and by the Norway Grant (grant agreement no. HU09-0044-A1-2013).

Ethical statement

Compliance with ethical standards

Funding

This study was funded by the European Union and co-financed by the European Social Fund (grant agreement no.: TÁMOP-4.2.4.A/ 2-11/1-2012-0001 ‘National Excellence Program’ (Krisztián Laczi); and TÁMOP-4.1.1.C-12/1/KONV-2012-0012) and by the Norway Grant (grant agreement no. HU09-0044-A1-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Rákhely.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 633 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laczi, K., Kis, Á., Horváth, B. et al. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 99, 9745–9759 (2015). https://doi.org/10.1007/s00253-015-6936-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6936-z

Keywords

Navigation