Skip to main content

Advertisement

Log in

Pretreatments for Enhanced Enzymatic Hydrolysis of Pinewood: a Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Pinewood is an abundant source of lignocellulosic biomass that has potential to be used as renewable feedstock in biorefineries for conversion into advanced biofuels and other value-added chemicals. However, its structural recalcitrance, due to the compact packing of its major components, viz. cellulose, hemicellulose and lignin, high lignin content, and high cellulose crystallinity, is a major bottleneck in its widespread use as a biorefinery feedstock. Typical chemical, thermal, and biological pretreatment technologies are aimed at removing lignin and hemicellulose fractions for improving enzyme accessibility and digestibility of cellulose. This review highlights common pine pretreatment procedures, associated key parameters and resulting enzymatic hydrolysis yields. The challenges and limitations are also discussed as well as potential strategies to overcome them, providing an essential source of information to realize pine as a compelling biorefinery biomass source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makela MR, Donofrio N, de Vries RP (2014) Plant biomass degradation by fungi. Fungal Genet Biol 72:2–9

    Article  PubMed  Google Scholar 

  2. Monrroy M, Ortega I, Ramirez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzym Microb Technol 49(5):472–477

    Article  CAS  Google Scholar 

  3. Normark M, Winestrand S, Lestander TA, Jonsson LJ (2014) Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine. BMC Biotechnol 14:20. doi:10.1186/1472-6750-14-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Oswalt SN, Smith WB (2014) U.S. forest resource facts and historical trends. Technical report published by the United States Department of Agriculture. doi:https://www.fia.fs.fed.us/library/brochures/docs/2012/ForestFacts_1952-2012_English.pdf

  5. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    Article  CAS  Google Scholar 

  6. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  7. Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    Article  CAS  PubMed  Google Scholar 

  8. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  9. Lehto JT, Alen RJ (2015) Chemical pretreatments of wood chips prior to alkaline pulping—a review of pretreatment alternatives, chemical aspects of the resulting liquors, and pulping outcomes. Bioresources 10(4):8604–8656

    Article  CAS  Google Scholar 

  10. Sinha A, Martin EM, Lim KT, Carrier DJ, Han H, Zharov VP, Kim JW (2015) Cellulose nanocrystals as advanced “green” materials for biological and biomedical engineering. J Biosyt Eng 40:373–393

    Article  Google Scholar 

  11. Price NPJ, Hartman TM, Faber TA, Vermillion KE, Fahey GC Jr (2011) Galactomannan oligosaccharides (CGMO) from a molasses byproduct of pine (Pinus taeda) fiberboard production. J Agric Food Chem 59:1854–1861

    Article  CAS  PubMed  Google Scholar 

  12. Tenkanen M, Makkonen M, Perttula M, Viikari L, Teleman A (1997) Action of Trichoderma reesei mannanase on galactoglucomannan in pine kraft pulp. J Biotechnol 57(1–3):191–204

    Article  CAS  PubMed  Google Scholar 

  13. Vats S, Maurya DP, Jain A, Mall V, Negi S (2013) Mathematical model-based optimization of physico-enzymatic hydrolysis of Pinus roxburghii needles for the production of reducing sugars. Indian J Exp Biol 51:944–953

    CAS  PubMed  Google Scholar 

  14. Sannigrahi P, Ragauskas AJ, Miller SJ (2010) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuel 24:683–689

    Article  CAS  Google Scholar 

  15. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  CAS  PubMed  Google Scholar 

  16. Zhou H, Lou H, Yang D, Zhu JY, Qiu X (2013) Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Res 52(25):8464–8470

    Article  CAS  Google Scholar 

  17. Nelson K, Retsina T (2014) Innovative nanocellulose process breaks the cost barrier. TAPPI J 13(5):19–23

    CAS  Google Scholar 

  18. Wang M, Leitch M, Xu CC (2009) Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. Eur Polym J 45(12):3380–3388

    Article  CAS  Google Scholar 

  19. Vuorela S, Kreander K, Karonen M, Nieminen R, Hamalainen M, Galkin A, Laitinen L, Salminen JP, Moilanen E, Pihlaja K, Vuorela H, Vuorela P, Heinonen M (2005) Preclinical evaluation of rapeseed, raspberry, and pine bark phenolics for health related effects. J Agric Food Chem 53:5922–5931

    Article  CAS  PubMed  Google Scholar 

  20. Pinelo M, Rubilar M, Sineiro J, Nunez MJ (2004) Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem 85:267–273

    Article  CAS  Google Scholar 

  21. Song H, Yang R, Zhao W, Katiyo W, Hua X, Zhang W (2014) Innovative assistant extraction of flavonoids from pine (Larix olgensis Henry) needles by high-density steam flash explosion. J Agric Food Chem 62:3806–3812

    Article  CAS  PubMed  Google Scholar 

  22. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106

    Article  CAS  Google Scholar 

  23. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  PubMed  Google Scholar 

  24. Rajan K, Carrier DJ (2014) Characterization of rice straw prehydrolyzates and their effect on the hydrolysis of model substrates, using a commercial endo-cellulase, β-glucosidase and cellulase cocktail. ACS Sustain Chem Eng 2:2124–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418

    Article  CAS  PubMed  Google Scholar 

  26. Zhu W, Zhu JY, Gleisner R, Pan XJ (2010) On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresour Technol 101:2782–2792

    Article  CAS  PubMed  Google Scholar 

  27. Zhu JY, Zhu W, OBryan P, Dien BS, Tian S, Gleisner R, Pan XJ (2010) Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol 86:1355–1365

    Article  CAS  PubMed  Google Scholar 

  28. Soto-Alvarez CE, Miranda JL, Rosales-Castro M, Perez-Verdin G, Pérez MAR, Hernández IC (2013) Alkaline pretreatment of Mexican pine residues for bioethanol production. Afr J Biotechnol 12(31):4956–4965

    Article  Google Scholar 

  29. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  30. Pettersen RC (1984) The chemical composition of wood. In: Rowell RM (ed) The chemistry of solid wood, 1st edn. ACS advances in chemistry series no. 207. American Chemical Society, Washington D.C.

    Google Scholar 

  31. Sandermann W (1973) The “true” dimensions in the macromolecular range. Holz Roh Werkst 31:11. doi:10.1007/BF02608215

    Article  CAS  Google Scholar 

  32. Akgul M, Gumuskaya E, Korkut S (2007) Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci Technol 41:281

    Article  CAS  Google Scholar 

  33. Kolodziejski W, Frye JS, Maclel GE (1982) Carbon-13 nuclear magnetic resonance spectrometry with cross polarization and magic-angle spinning for analysis of lodgepole pine wood. Anal Chem 54(8):1419–1424. doi:10.1021/ac00245a035

    Article  CAS  Google Scholar 

  34. Borysiak S, Doczekalska B (2005) XRD diffraction study of pine wood treated with NaOH. Fibres Text East Eur 13(5):53

    Google Scholar 

  35. Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willfor S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohyd Polym 77:851–857

    Article  CAS  Google Scholar 

  36. Alves A, Schwanninger M, Pereira H, Rodrigues J (2006) Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method. Holzforschung [ZDB] 60(1):29–31. doi:10.1515/HF.2006.006

    CAS  Google Scholar 

  37. Pandey KK (1998) A study of the chemical structure of soft and hardwood and wood polymers by FT-IR spectroscopy. J Appl Polym Sci 71:1969–1975

    Article  Google Scholar 

  38. Nimz HH, Robert D, Faix O, Nemr M (1981) Carbon-13 NMR spectra of lignins, 8. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforschung [ZDB] 35(1):16–26. doi:10.1515/hfsg.1981.35.1.16

    Article  CAS  Google Scholar 

  39. Terashima N, Fukushima K, Sano Y, Takabe K (1988) Heterogeneity in formation of lignin-X: visualization of lignification process in differentiating xylem of pine by microautoradiography. Holzforschung [ZDB] 42(6):347–350. doi:10.1515/hfsg.1988.42.6.347

    Article  CAS  Google Scholar 

  40. Terashima N, Fukushima K (1988) Heterogeneity in formation of lignin-XI: an autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci Technol 22(3):259–270

    Article  CAS  Google Scholar 

  41. Meier H, Wilkie KCB (1959) The distribution of polysaccharides in the cell wall of tracheids of pine (Pinus silvestris L.) Holzforschung 13(6):177–182. doi:10.1515/hfsg.1959.13.6.177

    Article  CAS  Google Scholar 

  42. Shahbazi A, Li Y, Mims MR (2005) Application of sequential aqueous steam treatments to the fractionation of softwood. Appl Biochem Biotechnol 121-4:973–988

    Article  Google Scholar 

  43. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  CAS  Google Scholar 

  44. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827

    Article  CAS  PubMed  Google Scholar 

  45. Amiri H, Karimi K (2015) Improvement of acetone, butanol, and ethanol production from woody biomass using organosolv pretreatment. Bioprocess Biosyst Eng 38(10):1959–1972

    Article  CAS  PubMed  Google Scholar 

  46. Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in loblolly pine. Carbohydr Res 345(7):965–970

    Article  CAS  PubMed  Google Scholar 

  47. Pan X, Xie D, Yu RW, Saddler JN (2008) The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 101(1):39–48

    Article  CAS  PubMed  Google Scholar 

  48. Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzym Microb Technol 43(2):214–219

    Article  CAS  Google Scholar 

  49. Li M, Tu M, Cao D, Bass P, Adhikari S (2013) Distinct roles of residual xylan and lignin in limiting enzymatic hydrolysis of organosolv pretreated loblolly pine and sweetgum. J Agric Food Chem 61(3):646–654

    Article  CAS  PubMed  Google Scholar 

  50. Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105(5):871–879

    CAS  PubMed  Google Scholar 

  51. Badiei M, Asim N, Jahim JM, Sopian K (2014) Comparison of chemical pretreatment methods for cellulosic biomass. APCBEE Procedia 9:170–174

    Article  CAS  Google Scholar 

  52. Parajo JC, Alonso JL, Santos V (1995) Kinetics of catalyzed organosolv processing of pine wood. Ind Eng Chem Res 34:4333–4342

    Article  CAS  Google Scholar 

  53. Vazquez G, Antorrena G, Gonzalez J, Freire S, Lopez S (1997) Acetosolv pulping of pine wood. Kinetic modeling of lignin solubilization and condensation. Bioresour Technol 59(2–3):121–127

    Article  CAS  Google Scholar 

  54. Pan XJ, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46(8):2609–2617

    Article  CAS  Google Scholar 

  55. Park N, Kim HY, Koo BW, Yeo H, Choi IG (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour Technol 101:7046–7053

    Article  CAS  Google Scholar 

  56. Rio LFD, Chandra RP, Saddler JN (2010) The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine. Appl Biochem Biotechnol 161:1–21

    Article  PubMed  CAS  Google Scholar 

  57. Parajo JC, Alonso JL, Vazquez D, Santos V (1993a) Optimization of catalyzed acetosolv fractionation of pine wood. Holzforschung 47:188–196

    Article  CAS  Google Scholar 

  58. Davis JL, Young RA, Deodhar SS (1986) Organic pulping of wood. III. Acetic acid pulping of spruce. Mokuzai Gakkaishi 32:905–914

    CAS  Google Scholar 

  59. Hoseinpour H, Karimi K, Zilouei H, Taherzadeh MJ (2010) Simultaneous pretreatment of lignocellulose and hydrolysis of starch in mixtures to sugars. Bioresources 5(4):2457–2469

    CAS  Google Scholar 

  60. Jeon YJ, Xun Z, Rogers PL (2010) Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett Appl Microbiol 51(5):518–524

    Article  CAS  PubMed  Google Scholar 

  61. Lim WS, Lee JW (2013) Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood. Bioresour Technol 140:306–311

    Article  CAS  PubMed  Google Scholar 

  62. Hernández IP, Pérez-Pimienta JA, Messina S, Saldaña Durán CE (2012) Dilute sulfuric acid hydrolysis of tropical region biomass. J Renew Sustain Ener 4:021201. doi:10.1063/1.3663878

    Article  CAS  Google Scholar 

  63. Li X, Luo X, Li K, Zhu JY, Fougere JD, Clarke K (2012) Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine. Appl Biochem Biotechnol 168(6):1556–1567

    Article  CAS  PubMed  Google Scholar 

  64. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohyd Polym 117:624–631

    Article  CAS  Google Scholar 

  65. Um BH, Park SJ (2014) Extraction of hemicellulosic sugar and acetic acid from different wood species with pressurized dilute acid pretreatment. J Korean Wood Sci Technol 42(2):172–182

    Article  Google Scholar 

  66. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24(3–4):151–159

    Article  CAS  Google Scholar 

  67. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  CAS  PubMed  Google Scholar 

  68. Godin B, Nagle N, Sattler S, Agneessens R, Delcarte J, Wolfrum E (2016) Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries. Biotechnol Biofuels 9:251. doi:10.1186/s13068-016-0667-y

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. Bioenergy Res 1(3–4):205–214

    Article  Google Scholar 

  70. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  71. Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35

    Article  CAS  Google Scholar 

  72. Yoon SH, Cullinan HT, Krishnagopalan GA (2010) Reductive modification of alkaline pulping of southern pine, integrated with hydrothermal pre-extraction of hemicelluloses. Ind Eng Chem Res 49:5969–5976

    Article  CAS  Google Scholar 

  73. Schenck AV, Berglin N, Uusitalo J (2013) Ethanol from Nordic wood raw material by simplified alkaline soda cooking pre-treatment. Appl Energy 102:229–240

    Article  CAS  Google Scholar 

  74. Huang F, Ragauskas A (2013) Extraction of hemicellulose from loblolly pine woodchips and subsequent Kraft pulping. Ind Eng Chem Res 52(4):1743–1749

    Article  CAS  Google Scholar 

  75. Saukkonen E, Kautto J, Irina R, Backfolk K (2012) Characteristics of prehydrolysis-kraft pulp fibers from scots pine. Holzforschung 66(7):801–808

    Article  CAS  Google Scholar 

  76. Jansson M, Berglin N, Olm L (2010) Second generation ethanol through alkaline fractionation of pine and aspen wood. Cell Chem Technol 44(1–3):47–52

    CAS  Google Scholar 

  77. Franco H, Ferraz A, Milagres AMF, Carvalho W, Freer J, Baeza J, Mendonça RT (2012) Alkaline sulfite/anthraquinone pretreatment followed by disk refining of Pinus radiata and Pinus caribaea wood chips for biochemical ethanol production. J Chem Technol Biotechnol 87(5):651–657

    Article  CAS  Google Scholar 

  78. Reyes P, Márquez N, Troncoso E, Parra C, Mendonça RT, Rodríguez J (2016) Evaluation of combined dilute acid-kraft and steam explosion-kraft processes as pretreatment for enzymatic hydrolysis of Pinus radiata wood chips. Bioresources 11(1):612–625

    CAS  Google Scholar 

  79. Maekawa E (1996) On an available pretreatment for the enzymatic sachharification of lignocellulosic materials. Wood Sci Technol 30:133–139

    Article  CAS  Google Scholar 

  80. Victor A, Pulidindi IN, Gedanken A (2015) Assessment of holocellulose for the production of bioethanol by conserving Pinus radiata cones as renewable feedstock. J Environ Manag 162:215–220

    Article  CAS  Google Scholar 

  81. Farias-Sanchez JC, Lopez-Miranda J, Castro-Montoya AJ, Saucedo-Luna J, Carrillo-Parra A, Lopez-Albarran P, Pineda-Pimentel MG, Rutiaga-Quinones JG (2015) Comparison of five pretreatments for the production of fermentable sugars obtained from Pinus pseudostrobus L. wood. EXCLI J 14:430–438

    PubMed  PubMed Central  Google Scholar 

  82. Hohlberg AI, Aguilera JM, Agosín E, Martín RS (1989) Catalyzed flash pretreatments improve saccharification of pine (Pinus radiata) sawdust. Biomass 18:81–93

    Article  CAS  Google Scholar 

  83. Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98(4):737–746

    Article  CAS  PubMed  Google Scholar 

  84. Lan TQ, Lou H, Zhu JY (2013) Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2-6.2. Bioenergy Res 6:476–485

    Article  CAS  Google Scholar 

  85. Lou H, Zhu JY, Lan TQ, Lai H, Qiu X (2013) pH-induced lignin surface modification to reduce nonspecific binding and enhance enzymatic saccharification of lignocelluloses. Chem Sus Chem 6:919–927

    Article  CAS  Google Scholar 

  86. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of woods in ionic liquids. J Agric Food Chem 55(22):9142–9148

    Article  PubMed  CAS  Google Scholar 

  87. Li C, Sun L, Simmons BA, Singh S (2013) Comparing the recalcitrance of eucalyptus, pine and switchgrass using ionic liquid and dilute acid pretreatments. Bioenergy Res 6(1):14–23

    Article  CAS  Google Scholar 

  88. Liu JF, Cao Y, Yang MH, Wang XJ, Li HQ, Xing JM (2014) Enhanced saccharification of lignocellulosic biomass with 1-allyl-3-methylimidazolium chloride (AmimCl) pretreatment. Chin Chem Lett 25(11):1485–1488

    Article  CAS  Google Scholar 

  89. Soudham VP, Raut DG, Anugwom I, Brandberg T, Larsson C, Mikkola JP (2015) Coupled enzymatic hydrolysis and ethanol fermentation: ionic liquid pretreatment for enhanced yields. Biotechnol Biofuels 8:135. doi:10.1186/s13068-015-0310-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Shi J, George KW, Sun N, He W, Li C, Stavila V, Keasling JD, Simmons BA, Lee TS, Singh S (2015) Impact of pretreatment technologies on saccharification and isopentenol fermentation of mixed lignocellulosic feedstocks. Bioenergy Res 8(3):1004–1013

    Article  CAS  Google Scholar 

  91. Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672–679

    Article  CAS  Google Scholar 

  92. Sievers C, Valenzuela-Olarte MB, Marzialetti T, Musin I, Agrawal PK, Jones CW (2009) Ionic-liquid-phase hydrolysis of pine wood. Ind Eng Chem Res 48(3):1277–1286

    Article  CAS  Google Scholar 

  93. Hyvarinen S, Virtanen P, Murzin DY, Mikkola JP (2010) Towards ionic liquid fractionation of lignocellulosics for fermentable sugars. Cellul Chem Technol 44(4–6):187–195

    CAS  Google Scholar 

  94. Hyvarinen S, Damlin P, Grasvik J, Murzin DY, Mikkola JP (2011) Ionic liquid fractionation of woody biomass for fermentable monosaccharides. Cellul Chem Technol 45(7–8):483–486

    CAS  Google Scholar 

  95. Peleteiro S, Garrote G, Santos V, Parajo JC (2014) Furan manufacture from softwood hemicelluloses by aqueous fractionation and further reaction in a catalyzed ionic liquid: a biorefinery approach. J Clean Prod 76:200–203

    Article  CAS  Google Scholar 

  96. Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–655

    Article  CAS  Google Scholar 

  97. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    Article  CAS  Google Scholar 

  98. Simmons BA, Blanch H (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin. doi:10.1002/bbb.303

  99. Sainio T, Kallioinen M, Nakari O, Manttari M (2013) Production and recovery of monosaccharides from lignocellulose hot water extracts in a pulp mill biorefinery. Bioresour Technol 135:730–737

    Article  CAS  PubMed  Google Scholar 

  100. Mou HY, Orblin E, Kruus K, Fardim P (2013) Topochemical pretreatment of wood biomass to enhance enzymatic hydrolysis of polysaccharides to sugars. Bioresour Technol 142:540–545

    Article  CAS  PubMed  Google Scholar 

  101. Pelaez-Samaniego MR, Yadama V, Garcia-Perez M, Lowell E (2015) Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction. Biomass Bioenergy 81:117–128

    Article  CAS  Google Scholar 

  102. Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B (2012) A sustainable woody biomass biorefinery. Biotechnol Adv 30(4):785–810

    Article  CAS  PubMed  Google Scholar 

  103. Yoon SH, MacEwan K, van Heiningen ARP (2008) Hot-water pre-extraction of loblolly pine (Pinus taeda) in an integrated forest products biorefinery. TAPPI J 7(6):27–31

    CAS  Google Scholar 

  104. Yoon SH, van Heiningen ARP (2008) Kraft pulping and papermaking properties of hot-water pre-extracted loblolly pine in an integrated forest products biorefinery. TAPPI J 7(7):22–27

    CAS  Google Scholar 

  105. Negro MJ, Manzanares P, Oliva JM, Ballesteros I, Ballesteros M (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenergy 25(3):301–308

    Article  CAS  Google Scholar 

  106. Aguilera JM, Martin RS (1985) Steam hydrolysis of pine (Pinus radiata) sawdust. Biomass 8:301–313

    Article  CAS  Google Scholar 

  107. Martin RS, Perez C, Briones R (1995) Simultaneous production of ethanol and kraft pulp from pine (Pinus radiata) using steam explosion. Bioresour Technol 53:217–223

    Article  Google Scholar 

  108. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Technol 59:618–628

    Article  CAS  Google Scholar 

  109. von Sivers M, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51:43–52

    Article  Google Scholar 

  110. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short middle and long term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  111. Wayman M, Chua MGS (1979) Characterization of autohydrolysis aspen (P. tremuloides) lignins. Part 4. Residual autohydrolysis lignin. Can J Chem 57(19):2612–2616

    Article  CAS  Google Scholar 

  112. Messner K, Strebotnik E (1994) Biopulping: an overview of developments in an environmentally safe paper-making technology. FEMS Microbiol Rev 13:351–364

    Article  CAS  Google Scholar 

  113. Akhtar M, Scott GM, Swaney RE, Kirk TK (1998) Overview of biomechanical and biochemical pulping research. In: Eriksson K et al (eds) Enzyme applications in fiber processing, ACS Symposium Series. American Chemical Society, Washington DC, pp 15–26

    Chapter  Google Scholar 

  114. Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258

    Article  CAS  PubMed  Google Scholar 

  115. Gulsoy SK, Eroglu H (2011) Biokraft pulping of European black pine with Ceriporiopsis subvermispora. Int Biodeterior Biodegrad 65:644–648

    Article  CAS  Google Scholar 

  116. Ryu SH, Cho MK, Kim M, Jung SM, Seo JH (2013) Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips. Appl Biochem Biotechnol 171(6):1525–1534

    Article  CAS  PubMed  Google Scholar 

  117. Hwang SS, Lee SJ, Kim HK, Ka JO, Kim KJ, Song HG (2008) Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. Microb Biotechnol 18(11):1819–1825

    CAS  Google Scholar 

  118. Schilling JS, Tewalt JP, Duncan SM (2009) Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown-rot fungal systems. Appl Microbial Biotechnol 84:465–475

    Article  CAS  Google Scholar 

  119. Ray MJ, Leak DJ, Spanu PD, Murphy RJ (2010) Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy 34:1257–1262

    Article  CAS  Google Scholar 

  120. Aguiar A, Mendonca R, Ferraz A (2003) Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzym Microb Technol 33:12–18

    Article  CAS  Google Scholar 

  121. Aguiar A, Souza-Cruz PB, Ferraz A (2006) Oxalic acid, Fe3+ reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzym Microb Technol 38:873–878

    Article  CAS  Google Scholar 

  122. Aguiar A, Ferraz A (2008) Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. Int Biodeterior Biodegrad 61:182–188

    Article  CAS  Google Scholar 

  123. Aguiar A, Gavioli D, Ferraz A (2013) Extracellular activities and wood component losses during Pinus taeda biodegradation by the brown-rot fungus Gloeophyllum trabeum. Int Biodeterior Biodegrad 82:187–191

    Article  CAS  Google Scholar 

  124. Aguiar A, Gavioli D, Ferraz A (2014) Metabolite secretion, Fe3+ reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869. Fungal Biol 118:935–942

    Article  CAS  PubMed  Google Scholar 

  125. Levin L, Villalba L, Re VD, Forchiassin F, Papinutti L (2007) Comparative studies of loblolly pine biodegradation and enzyme production by Argentinian white rot fungi focused on biopulping processes. Process Biochem 42:995–1002

    Article  CAS  Google Scholar 

  126. Fissore A, Carrasco L, Reyes P, Rodríguez J, Freer J, Mendonca RT (2010) Evaluation of a combined brown-rot decay-chemical delignification process as a pretreatment for bioethanol production from Pinus radiata wood chips. J Ind Microbiol Biotechnol 37:893–900

    Article  CAS  PubMed  Google Scholar 

  127. Vaidya A, Singh T (2012) Pre-treatment of Pinus radiata substrates by basidiomycetes fungi to enhance enzymatic hydrolysis. Biotechnol Lett 34:1263–1267

    Article  CAS  PubMed  Google Scholar 

  128. Monrroy M, Ibanez J, Melin V, Baeza J, Mendonca RT, Contreras D, Freer J (2010) Bioorganosolv pretreatments of P. radiata by a brown rot fungus (Gloeophyllum trabeum) and ethanolysis. Enzym Microb Technol 47:11–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the USDA National Institute of Food and Agriculture, capacity grant (S15-723-15-1), the National Science Foundation (OIIA 1457888), and Division of Agriculture, the University of Arkansas System.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Julie Carrier or Jin-Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandhola, G., Djioleu, A., Carrier, D.J. et al. Pretreatments for Enhanced Enzymatic Hydrolysis of Pinewood: a Review. Bioenerg. Res. 10, 1138–1154 (2017). https://doi.org/10.1007/s12155-017-9862-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9862-3

Keywords

Navigation