Skip to main content

Chemical Pretreatment Techniques for Biofuels and Biorefineries from Softwood

  • Chapter
  • First Online:
Pretreatment Techniques for Biofuels and Biorefineries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Lignocellulosic materials, such as wood, grass, and agricultural and forest residues, are potential resources for the production of bioethanol. The biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. During the whole process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. Physical, physical–chemical, chemical, and biological processes have been used for pretreatment of lignocellulosic materials. This chapter summarizes the leading technologies in chemical pretreatment on softwood, particularly pine species, which generally show relatively higher recalcitrance than hardwood, grass, and other lignocellulosic materials. Different chemical pretreatment techniques, including dilute acid pretreatment, alkaline hydrolysis, wet oxidation, sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL), organosolv, ionic liquids pretreatment, and ozonolysis process are intensively introduced and discussed. In this chapter, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210

    Article  Google Scholar 

  2. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  3. David K, Ragauskas AJ (2010) Switchgrass as an energy crop for biofuel production: a review of its ligno-cellulosic chemical properties. Energy Environ Sci 3:1182–1190

    Article  Google Scholar 

  4. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  Google Scholar 

  5. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng/Biotechnol 108:41–65

    Article  Google Scholar 

  6. Fatih Demirbas M (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:S151–S161

    Article  Google Scholar 

  7. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  Google Scholar 

  8. Dalgaard T, Jorgensen U, Olesen JE, Jensen ES, Kristensen ES (2006) Looking at biofuels and bioenergy. Science 312(5781):1743–1744

    Article  Google Scholar 

  9. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27(2–3):175–185

    Article  Google Scholar 

  10. U.S. Department of Energy’s Office of Biological and Environmental Research. https://public.ornl.gov/site/gallery/detail.cfm?id=248&topic=53&citation=&general=&restsection=public. Accessed 26 March 2012

  11. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:1–17

    Google Scholar 

  12. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  Google Scholar 

  13. Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast - growing crop for biofuels and chemicals production. Biofuels Bioprod Bioref 6:580–598

    Google Scholar 

  14. Ingram T, Wormeyer K, Lima JC, Bockemuhl V, Antranikian G, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products. Bioresour Technol 102:5221–5228

    Article  Google Scholar 

  15. Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod Biorefin 5(2):215–225

    Article  Google Scholar 

  16. Faulon J, Carlson GA, Hatcher PG (1994) A three-dimensional model for lignocellulose from gymno-spermous wood. Org Geochem 21:1169–1179

    Article  Google Scholar 

  17. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 44:3358–3393

    Article  Google Scholar 

  18. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibers. Cellulose 12(6):563–576

    Article  Google Scholar 

  19. Newman RH (2004) Homogeneity in cellulose crystallinity between samples of Pinus radiata wood. Holzforschung 58(1):91–96

    Article  Google Scholar 

  20. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    Article  Google Scholar 

  21. Horii F, Hirai A, Kitamaru R (1987) Transformation of native cellulose crystals from cellulose I(β) to I(α) through solid-state chemical reactions. Macromolecules 20(6):1440–1442

    Google Scholar 

  22. Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24(6):2461–2469

    Article  Google Scholar 

  23. Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40

    Article  Google Scholar 

  24. Stephens CH, Whitmore PM, Morris HR, Bier ME (2008) Hydrolysis of the amorphous cellulose in cotton-based paper. Biomacromolecules 9:1093–1099

    Article  Google Scholar 

  25. Wagberg L, Annergren GO (1997) Physicochemical characterization of papermaking fibers. In: Baker CF (ed) The fundamentals of papermaking materials. Transaction of the 11th fundamental research symposium. Pira International, Cambridge, pp  1–82

    Google Scholar 

  26. Harmsen PFH, Huijgen WJJ, Bermúdez López LM, Bakker RRC (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Energy Research Center of the Netherlands, the Amsterdam

    Google Scholar 

  27. Krassig H, Schurz J (2002) Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley Weinheim

    Google Scholar 

  28. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73

    Article  Google Scholar 

  29. Willför S, Sundberg A, Pranovich A, Holmbom B (2005) Polysaccharides in some industrially important hardwood species. Wood Sci Technol 39:601–617

    Article  Google Scholar 

  30. Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257

    Article  Google Scholar 

  31. Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbert B, Cathala B (2007) Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226:267–281

    Article  Google Scholar 

  32. Bunzel M, Ralph J, Lu F, Hatfield RD, Steinhart H (2004) Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. J Agric Food Chem 52:6496–6502

    Article  Google Scholar 

  33. Lawoko M, Henriksson G, Gellerstedt G (2006) Characterization of lignincarbohydrate complexes (LCCs) of spruce wood (Picea abies L) isolated with two methods. Holzforschung 60:156–161

    Google Scholar 

  34. Brunow G, Lundquist K, Gellerstedt G (1999) Lignin: analytical methods in wood chemistry. In: Sjostrom E (ed) Pulping and papermaking. Springer, Berlin, pp 77–124

    Google Scholar 

  35. Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415

    Article  Google Scholar 

  36. Halpin C (2004) Redesigning lignin for industry and agriculture. Biotechnol Genet Eng Rev 21:229–245

    Google Scholar 

  37. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  Google Scholar 

  38. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33

    Article  Google Scholar 

  39. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20:131–141

    Article  Google Scholar 

  40. Huang F, Singh PM, Ragauskas AJ (2011) Characterization of milled wood lignin (MWL) in Loblolly pine stem wood, residue, and bark. J Agr Food Chem 59:12910–12916

    Article  Google Scholar 

  41. Meister JJ (2002) Modification of lignin. J Macromol Sci Polym Rev C42(2):235–289

    Article  Google Scholar 

  42. Guerra A, Xavier A, Hai A, Filpponen I, Lucia L, Argyropoulos D (2006) Different wood species offer different yields, lignin structures, and molecular weights when isolated with the same method. J Agr Food Chem 54:9696–9705

    Article  Google Scholar 

  43. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41

    Article  Google Scholar 

  44. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  Google Scholar 

  45. Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576

    Google Scholar 

  46. Kim JS, Lee YY, Park SC (2000) Pretreatment of wastepaper and pulp mill sludge by aqueous ammonia and hydrogen peroxide. Appl Biochem Biotechnol 84/86:129–139

    Article  Google Scholar 

  47. Brink DL (1994) Method of treating biomass material. US Patent 5,366,558

    Google Scholar 

  48. Goldstein IS, Easter JM (1992) An improved process for converting cellulose to ethanol. TAPPI J 75(8):135–140

    Google Scholar 

  49. Israilides CJ, Grant GA, Han YW (1978) Sugar level, fermentability, and acceptability of straw treated with different acids. Appl Environ Microbiol 36(1):43–46

    Google Scholar 

  50. Monavari S, Galbe M, Zacchi G (2009) Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresour Technol 100:6312–6316

    Article  Google Scholar 

  51. Söderström J, Pilcher L, Galbe M, Zacchi G (2002) Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl Biochem Biotechnol 98–100:5–21

    Google Scholar 

  52. Tengborg C, Stenberg K, Galbe M, Zacchi G, Larsson S, Palmqvist E, Hahn-Hägerdal B (1998) Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol 70–72:3–15

    Google Scholar 

  53. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2(4):707–738

    Google Scholar 

  54. Lloyd T, Wyman CE (2003) Application of a depolymerization model for predicting thermochemical hydrolysis of hemicellulose. Appl Biochem Biotechnol 105:53–67

    Article  Google Scholar 

  55. Kabel MA, Bos G, Zeevalking J, Voragen AG, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042

    Article  Google Scholar 

  56. Soderstrom J, Galbe M, Zacchi G (2005) Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. J Wood Chem Technol 25:187–202

    Article  Google Scholar 

  57. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  58. Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803

    Article  Google Scholar 

  59. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  Google Scholar 

  60. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Google Scholar 

  61. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26(6):863–871

    Article  Google Scholar 

  62. Sannigrahi P, Kim DH, Jung SW, Ragauskas AJ (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4:1306–1310

    Article  Google Scholar 

  63. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977

    Article  Google Scholar 

  64. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    Article  Google Scholar 

  65. Foston M, Ragauskas AJ (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass Bioenergy 34:1885–1895

    Article  Google Scholar 

  66. Cao S, Pu Y, Studer M, Wyman CL, Ragauskas AJ (2012) Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances 2:10925–10936

    Article  Google Scholar 

  67. Emsley AM, Heywood RJ (1997) On the kinetics of degradation of cellulose. Cellulose 4:1–5

    Article  Google Scholar 

  68. Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. Bioenergy Res 1:205–214

    Article  Google Scholar 

  69. Kobayashi T, Kohn B, Holmes L, Faulkner R, Davis M, Maciel GE (2011) Molecular-level consequences of biomass pretreatment by dilute sulfuric acid at various temperatures. Energy Fuels 25:1790–1797

    Article  Google Scholar 

  70. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925

    Article  Google Scholar 

  71. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339

    Article  Google Scholar 

  72. Kumar L, Chandra R, Chung PA, Saddler J (2010) Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresour Technol 101:7827–7833

    Article  Google Scholar 

  73. Grethlein HE, Allen DC, Converse AO (1984) A comparative study of the enzymatic hydrolysis of acid-pretreated white pine and mixed hardwood. Biotechnol Bioeng 26:1498–1505

    Article  Google Scholar 

  74. Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98(4):737–746

    Article  Google Scholar 

  75. Tu M, Chandra RP, Saddler JN (2007) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog 23:1130–1137

    Article  Google Scholar 

  76. Huang F, Ragauskas AJ (2012) Dilute H2SO4 and SO2 pretreatments of loblolly pine wood residue for bioethanol production. Ind Biotechnol 8(1):22–30

    Article  Google Scholar 

  77. Ouyang J, Dong Z, Song X, Lee X, Chen M, Yong Q (2010) Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresour Technol 101:6685–6691

    Article  Google Scholar 

  78. Alkasrawi M, Eriksson T, Börjesson J, Wingren A, Galbe M, Tjerneld F, Zacchi G (2003) The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb Technol 33:71–78

    Article  Google Scholar 

  79. Helle SS, Duff SJB, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42:611–617

    Article  Google Scholar 

  80. Kaar WE, Holtzapple M (1998) Benefits from tween during enzymatic hydrolysis of corn stover. Biotechnol Bioeng 59:419–427

    Article  Google Scholar 

  81. Kim MH, Lee SB, Ryu DDY(1982) Surface deactivation of cellulase and its prevention. Enzyme Microb Technol 4:99–103

    Article  Google Scholar 

  82. Park JW, Takahata Y, Kajiuchi T, Akehata T(1992) Effects of nonionic surfactant on enzymatic-hydrolysis of used newspaper. Biotechnol Bioeng 39:117–120

    Article  Google Scholar 

  83. Carrillo F, Lis MJ, Colom X (2005) Effect of alkali pretreatment on cellulase hydrolyiss of wheat straw: kinetic study. Process Biochem 40:3360–3364

    Article  Google Scholar 

  84. Chang VS, Nagwani M, Kim CH (2001) Oxidative lime pretreatment of high-lignin biomass—poplar wood and newspaper. Appl Biochem Biotechnol 94:1–28

    Article  Google Scholar 

  85. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84/86:5–37

    Article  Google Scholar 

  86. Kim TH, Kim JS, Sunwoo C (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Article  Google Scholar 

  87. Prior BA, Day DF (2008) Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, beta-glucosidase, and hemicellulase preparations. Appl Biochem Biotechnol 146:151–164

    Article  Google Scholar 

  88. Mishima D, Tateda M, Ike M (2006) Comparative study on chemicals pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresour Technol 97:2166–2172

    Article  Google Scholar 

  89. Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically accharified wheat straw. Biotechnol Prog 22:449–453

    Article  Google Scholar 

  90. Saha BC, Cotta MA (2007) Enzymatic saccharification and fermentation of alkaline peroxide retreated rice hulls to ethanol. Enzyme Microb Technol 41:528–532

    Article  Google Scholar 

  91. Peters MS, Timmerhaus KD (1991) Plant design and economics for chemical engineers, 4th edn. McGraw-Hill, New York

    Google Scholar 

  92. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agr Biol Eng 2:51–68

    Google Scholar 

  93. Pavlostathis SG, Gossett JM (1985) Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol Bioeng 27:334–344

    Article  Google Scholar 

  94. Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    Article  Google Scholar 

  95. Balakshin M, Capanema E, Gracz H, Chang HM, Jameel H (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110

    Article  Google Scholar 

  96. Wan CX, Zhou YG, Li YB (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102:6254–6259

    Article  Google Scholar 

  97. He YF, Pang YZ, Liu YP, Li XJ, Wang KS (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22:2775–2781

    Article  Google Scholar 

  98. Taherzadeh MJ, Karimi K (2008) Pretreatment of Lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  99. Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis biotechnology monographs. Springer, Berlin

    Book  Google Scholar 

  100. Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 102:4793–4799

    Article  Google Scholar 

  101. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  Google Scholar 

  102. Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5(2):928–938

    Google Scholar 

  103. Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari L (2004) Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl Biochem Biotechnol 117:1–17

    Article  Google Scholar 

  104. Martín C, Marcet M, Thomsen AB (2008) Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse. Bioresources 3(3):670–683

    Google Scholar 

  105. Pedersen M, Meyer AS (2009) Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol Prog 25(2):399–408

    Article  Google Scholar 

  106. Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 33:1680–1686

    Article  Google Scholar 

  107. Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432

    Article  Google Scholar 

  108. Martín C, Marcet M, Thomsen AB (2008) Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse. Bioresources 3(3):670–683

    Google Scholar 

  109. Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100:2411–2418

    Article  Google Scholar 

  110. Ingruber O (1985) Sulfite science part I: sulfite pulping cooking liquor and the four bases. In: Ingruber O, Kocurek M, Wong A (eds) Sulfite science and technology. The joint textbook committee of the paper industry, 3rd edn. TAPPI/CPPA, Atlanta, pp 3–23

    Google Scholar 

  111. Bryce JRG (1980) Sulfite pulping. In: Casey JP (ed) Pulp and paper: chemistry and chemical technology, 3rd edn. Wiley, New York, pp 291–376

    Google Scholar 

  112. Wang GS, Pan XJ, Zhu JY, Gleisner R, Rockwood D (2009) Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnol Prog 25(4):1086–1093

    Article  Google Scholar 

  113. Janson J, Sjostrom E (1964) Behaviour of xylan during sulphite cooking of birchwood. Sven Papperstidn 67:764–771

    Google Scholar 

  114. Meier H (1962) On the behavior of wood hemicelluloses under different pulping conditions. Part I. Birch hemicellulose. Sven Papperstidn 65:299–305

    Google Scholar 

  115. Meier H (1962) On the behavior of wood hemicelluloses under different pulping conditions. Part II. Spruce hemicellulose. Sven Papperstidn 65:589–594

    Google Scholar 

  116. Pfister K, Sjostrom E (1977) The formation of monosaccharides and aldonic and uronic acids during sulphite cooking. Pap Puu 59:711–720

    Google Scholar 

  117. Sundman J (1950) Sockerutlosningen vid sulfitcellulosakoket. Pap Puu 32:267–274

    Google Scholar 

  118. Heuser E (1950) Trends in fundamental research in the cellulose and wood pulp field. TAPPI 33:118–124

    Google Scholar 

  119. Hall L, Stockman L (1958) Sulfitkokning vid olika aciditet. Sven Papperstidn 61:871–880

    Google Scholar 

  120. Zhu JY, Zhu W, Obryan P, Dien BS, Tian S, Gleisner R, Pan XJ (2010) Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microb Biotechnol 86:1355–1365

    Article  Google Scholar 

  121. Papatheofanous MG, Billa E, Koullas DP, Monties B, Koukios EG (1995) Two stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresour Technol 54:305–310

    Article  Google Scholar 

  122. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microb Biotechnol 82:815–827

    Article  Google Scholar 

  123. Zhang YH (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microb Biotechnol 35:367–375

    Article  Google Scholar 

  124. Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  Google Scholar 

  125. Lora JH, Aziz S (1985) Organosolv pulping: a versatile approach to wood refining. TAPPI J 68:94–97

    Google Scholar 

  126. Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping method and pulp properties. Biomass 13:45–65

    Article  Google Scholar 

  127. Aziz S, Sarkanen K (1989) Organosolv pulping—a review. TAPPI J 72:169–175

    Google Scholar 

  128. Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345:965–970

    Article  Google Scholar 

  129. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  Google Scholar 

  130. Meshgini M, Sarkanen KV (1989) Synthesis and kinetics of acid-catalyzed hydrolysis of some α-aryl ether lignin model compounds. Holzforschung 43:239–243

    Article  Google Scholar 

  131. Evtiguin DV, Neto CP, Silvestre AJD (1997) Condensation reactions of lignin during oxygen delignification under acidic conditions. J Wood Chem Technol 17:41–55

    Article  Google Scholar 

  132. Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617

    Article  Google Scholar 

  133. Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb Technol 43:214–219

    Article  Google Scholar 

  134. Del Rio LF, Chandra RP, Saddler JN (2010) The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine. Appl Biochem Biotechnol 161:1–21

    Article  Google Scholar 

  135. Park N, Kim HY, Koo BW, Yeo H, Choi IG (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour Technol 101:7057–7064

    Google Scholar 

  136. Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129/132:55–70

    Article  Google Scholar 

  137. Fukaya Y, Hayashi K, Wada M (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  Google Scholar 

  138. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    Article  Google Scholar 

  139. Mikkola JP, Kirilin A, Tuuf JC (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9:1229–1237

    Article  Google Scholar 

  140. Rogers RD (2002) Ionic liquids: not so green? Chem Eng News 80:4–5

    Google Scholar 

  141. Rogers RD, Holbrey JD, Spear SK (2004) Ionic liquids as green solvents: Engineering bioactive cellulose materials. Abstr Pap Amer Chem Soc227:U310

    Google Scholar 

  142. Swatloski RP, Spear SK, Holbrey JD (2003) Ionic liquids as green solvents for the dissolution and regeneration of cellulose. Abstr Pap Amer Chem Soc 225:U288

    Google Scholar 

  143. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  Google Scholar 

  144. Feng L, Chen ZJ (2008) Research progress on dissolution and functional modification of cellulose in ionic liquid. J Mol Liq 142:1–5

    Article  Google Scholar 

  145. Zhu SD (2008) Perspective used of ionic liquids for the efficient utilization of lignocellulosic materials. J Chem Technol Biotechnol 83:777–779

    Article  Google Scholar 

  146. Dadi AP, Schall CA, Varanasi S (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910

    Article  Google Scholar 

  147. Dadi AP, Schall CA, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolyis by ionic liquid pretreatment. Appl Biochem Biotechnol 137:407–421

    Article  Google Scholar 

  148. Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    Article  Google Scholar 

  149. Ben-Ghedalia D, Miron J (1981) The effect of combined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol Bioeng 23:823–831

    Article  Google Scholar 

  150. Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26:59–65

    Article  Google Scholar 

  151. Ben-Ghedalia D, Shefet G (1983) Chemical treatments for increasing the digestibility of cotton straw. J Agr Sci 100:393–400

    Article  Google Scholar 

  152. Vidal PF, Molinier J (1988) Ozonolysis of lignin—improvement of in vitro digestibility of poplar sawdust. Biomass 16:1–17

    Article  Google Scholar 

  153. Garcia-Cubero MA, Gonzalez-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613

    Article  Google Scholar 

  154. Contreras S (2002) Degradation and biodegradability enhancement of nitrobenzene and 2,4-dichlorophenol by means of advanced oxidation processes based on ozone. PhD Thesis, University of Barcelona, Spain

    Google Scholar 

  155. Sannigrahi P, Hu F, Pu Y, Ragauskas A (2012) Novel oxidative pretreatment of Loblolly pine, sweetgum, and miscanthus by ozone. J Wood Chem Technol 32:361–375

    Article  Google Scholar 

  156. Saratale GD, Oh SE (2012) Lignocellulosics to ethanol: the future of the chemical and energy industry. Afr J Biotechnol 11(5):1002–1013

    Google Scholar 

  157. Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment-a review. Biotechnol Bioeng 109(6):1430–1442

    Google Scholar 

  158. Tan RR, Culaba AB, Purvis MRI (2002) Application of possibility theory in the life-cycle inventory assessment of biofuels. Int J Energy Res 26:737–745

    Article  Google Scholar 

  159. Azapagic A, Clift R (1999) The application of life cycle assessment to process optimization. Comput Chem Eng 23:1509–1526

    Article  Google Scholar 

  160. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251(4999):1318–1323

    Article  Google Scholar 

  161. Tonon SMT, Brown F, Luchi A, Mirandola A, Stoppato, Ulgiati S (2006) An integrated assessment of energy conversion processes by means of thermodynamic, economic and environmental parameters. Energy 31:149–163

    Google Scholar 

  162. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  Google Scholar 

  163. Foston M, Hubbell CA, Samuel R, Jung S, Fan H, Ding S-Y, Zeng Y, Jawdy S, Davis M, Sykes R, Gjersing E, Tuskan GA, Kalluri U, Ragauskas AJ (2011) Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy Environ Sci 4:4962–4971

    Article  Google Scholar 

  164. DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE (2011) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci 4:4332–4339

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the US Department of Energy (DOE biorefinery project: DE-EE0003144) for these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Ragauskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ragauskas, A.J., Huang, F. (2013). Chemical Pretreatment Techniques for Biofuels and Biorefineries from Softwood. In: Fang, Z. (eds) Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32735-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32735-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32734-6

  • Online ISBN: 978-3-642-32735-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics